

Graph-based Text Representations: Boosting Text Mining, NLP and Information Retrieval with Graphs

Fragkiskos D. Malliaros UC San Diego

Michalis Vazirgiannis École Polytechnique

Updated slides at: http://fragkiskosm.github.io/projects/graph_text_tutorial

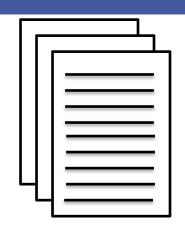
Conference on Empirical Methods in Natural Language Processing (EMNLP)

Copenhagen, Denmark

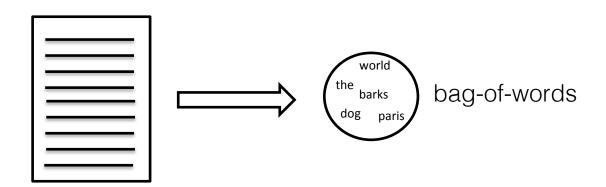
September 7–11, 2017

Text Mining – Terminology

- Text mining on a collection of documents:
 - The collection is the data set
 - The documents are the data points



 Since text is unstructured, a document is usually converted in a common representation



Example: Text Categorization

Applications:

- Opinion mining (sentiment analysis)
- Email spam classification
- Web-pages classification
- ..

Bag-of-Words (BoW) - Issues

Example text

information retrieval is the activity of obtaining

information resources relevant to an information need

from a collection of information resources

```
Bag of words: [(activity,1), (collection,1) (information,4), (relevant,1), (resources, 2), (retrieval, 1), ...]
```

- Term independence assumption
- Term frequency weighting

Assumptions made by the BoW model

Graph-based Document Representation

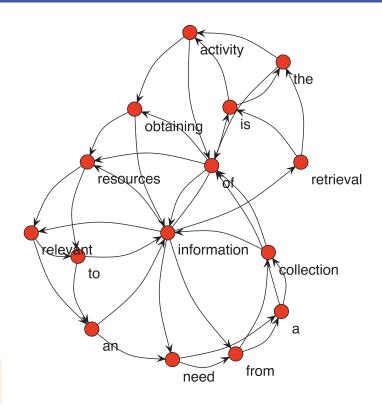
- Challenge the term independence and term frequency weighting assumptions taking into account word dependence, order and distance
- Employ a graph-based document representation capturing the above
- Graphs have been successfully used in IR to encompass relations and propose meaningful weights (e.g., PageRank)

Graph-based Document Representation - Example

information retrieval is the activity of obtaining information resources relevant to an information need from a collection of information resources

Idea: Replace term frequency with node centrality

Captures: frequency, order and distance



Goal of the Tutorial and Outline

Goal: offer a comprehensive presentation of recent methods that rely on graph-based text representations to deal with various tasks in NLP and IR

- Part I. Graph-theoretic concepts and graph-based text representation
- Part II. Information retrieval
- Part III. Keyword extraction and text summarization
- Part IV. Text categorization
- Part V. Final remarks and future research directions

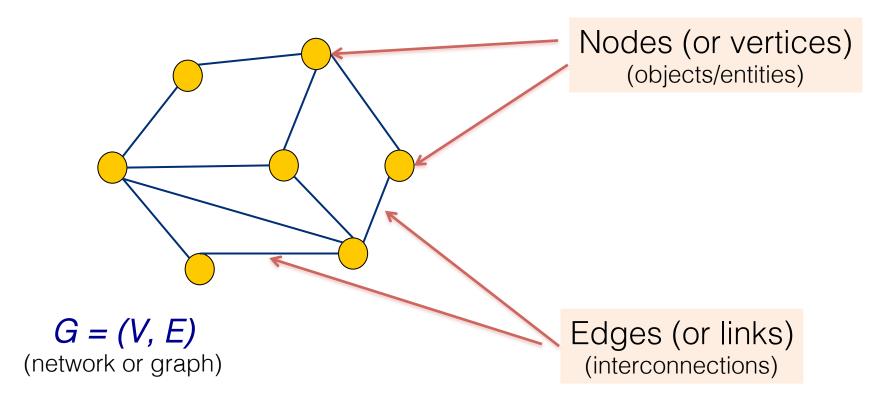
Tutorial Outline

- Part I. Graph-theoretic concepts and graph-based text representation
- Part II. Information retrieval
- Part III. Keyword extraction and text summarization
- Part IV. Text categorization
- Part V. Final remarks and future research directions

Basic graph-theoretic concepts and definitions

Graphs and Networks

Graphs: modeling dependencies

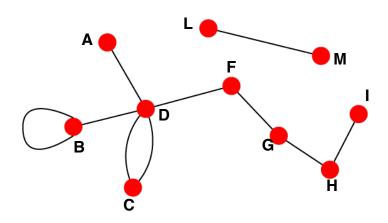


$$n = |V|$$
 is the number of nodes $m = |E|$ is the number of edges

Undirected vs. Directed Networks

Undirected

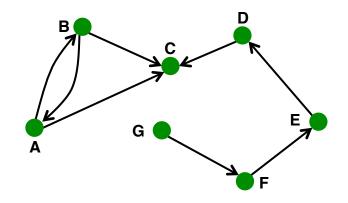
 Links: undirected (symmetrical, reciprocal)



- Examples
 - Collaborations
 - Friendship on Facebook

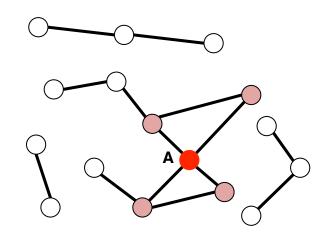
Directed

 Links: directed (arcs)



- Examples
 - Phone calls
 - Following on Twitter

Node Degree



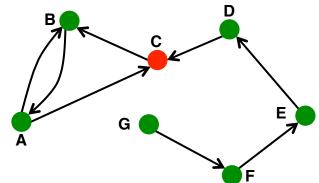
Node degree k_i : the number of edges adjacent to node i

$$k_A = 4$$

Average degree:

$$\bar{k} = \langle k \rangle = \frac{1}{n} \sum_{i=1}^{n} k_i = \frac{2|E|}{n}$$

Directe



Source: Node with $k^{in} = 0$ Sink: Node with $k^{out} = 0$

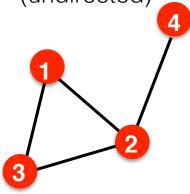
In directed networks we define an indegree and out-degree

The (total) degree of a node is the sum of inand out-degrees

$$k_C^{in} = 2 \qquad k_C^{out} = 1 \qquad k_C = 3$$

Average:
$$k^{\overline{i}n} = k^{\overline{o}ut}$$

More Types of Graphs



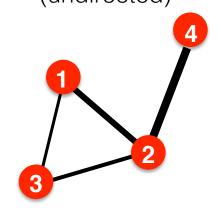
$$A_{ij} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$A_{ii} = 0 A_{ij} = A_{j}$$

$$|E| = \frac{1}{2} \sum_{i,j=1}^{n} A_{ij} \quad \overline{k} = \frac{2|E|}{n}$$

Examples: Friendship, Hyperlink

Weighted (undirected)



$$A_{ij} = \begin{pmatrix} 0 & 2 & 0.5 & 0 \\ 2 & 0 & 1 & 4 \\ 0.5 & 1 & 0 & 0 \\ 0 & 4 & 0 & 0 \end{pmatrix}$$

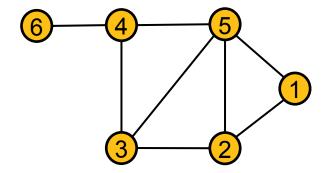
$$A_{ii} = 0 \qquad A_{ij} = A_{ji}$$

$$|E| = \frac{1}{2} \sum_{i,j=1}^{n} nonzero(A_{ij}) \quad \overline{k} = \frac{2|E|}{n}$$

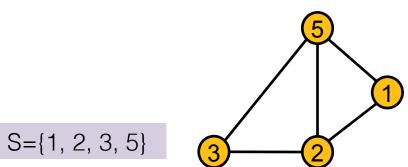
Examples: Collaboration, Internet, Roads

Subgraphs

• Let G = (V, E) be a graph and let $S \subseteq V$ be any subset of its vertices



• Definition: The induced subgraph G[S] = (S, E') is the graph whose vertex set is S and its edge set consists of all of the edges in E that have both endpoints in S



Representation Matters!

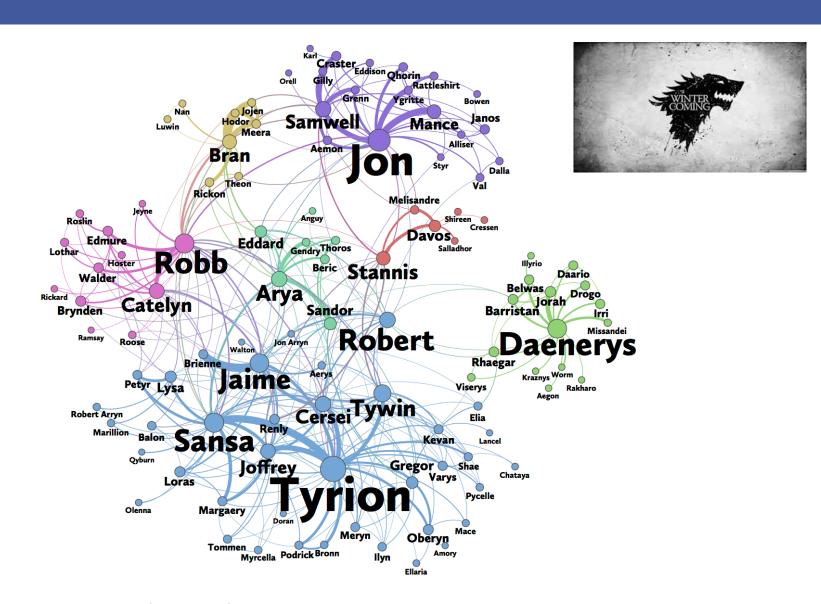
Choice of the proper network representation of a given system determines our ability to use networks successfully

Centrality criteria

Centrality in Networks (1/2)

- Determine the relative importance of a node in the network
 - Applications in Social Network Analysis, the Internet, Epidemiology, Urban informatics, ...
- What do we mean by centrality?
 - A central node is more important or powerful ...
 - Or, more influential ...
 - Or, is more critical due to its location in the graph
- Also, very closely related to the problem of ranking in the context of Web search
 - Each webpage can be considered as a 'user'
 - Each hyperlink is an endorsement relationship
 - Centrality measures provide a query independent link-based score of importance of a web page

Centrality in Networks (2/2)



Types of Centrality

- Starting point: the central node of a star is the most important
- Why?
 - The node with the highest degree
 - The node that is closest to the rest nodes (e.g., has the smallest average distance to other nodes)
 - The node through which all shortest paths pass
 - The node that maximizes the dominant eigenvector (the one that corresponds to the largest eigenvalue) of the adjacency matrix
 - The node with highest probability in the stationary distribution of a random walk on the graph

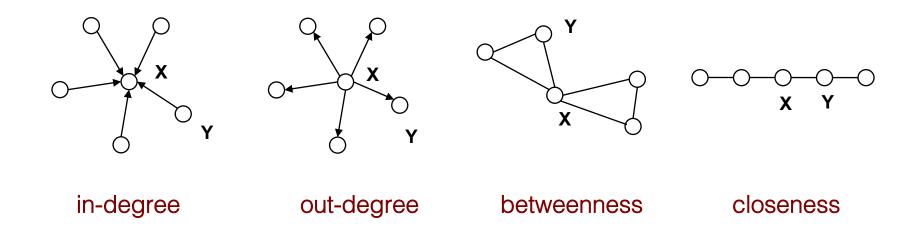
Various competing views of centrality

Measures of Centrality

- This observation leads to the following classes of indices of centrality:
 - Measures based on distances (e.g., degree, closeness)
 - Measures based on paths (e.g., betweenness, Katz's index)
 - Spectral measures (eigenvector, PageRank, HITS, SALSA, random walks with restarts)
 - Measure based on groups of nodes (e.g., cliques, plexes, cores)
 - Related to the "clustering" structure
 - More on that in another lecture

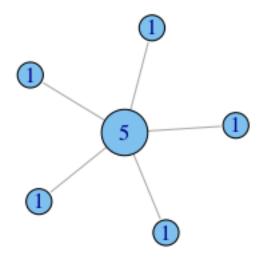
A First Example

In each of the following networks, X has higher centrality than Y according to a particular measure



Degree Centrality (1/2)

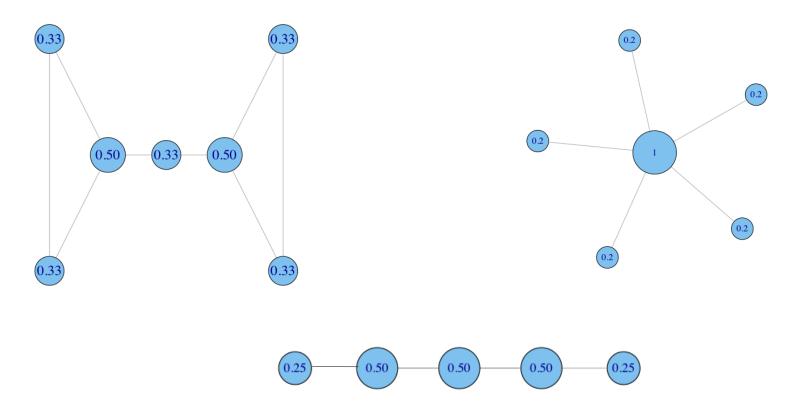
• Idea: A central node is one with many connections



• $C_d(i) = k(i)$, where k(i) is the degree of node i

Degree Centrality (2/2)

Idea: A central node is one with many connections



Normalized degree centrality: divide by the max possible degree
 (n-1)

Closeness Centrality

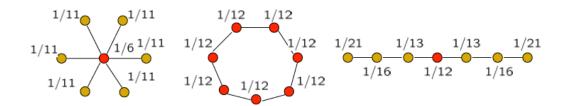
 Motivation: it measures the ability to quickly access or pass information through the graph

$$C_{cl}(i) = \frac{n-1}{\sum_{j \neq i} d(i,j)}$$
 values in the range [0,1]

Mean distance from a node to other nodes

d(i, j) is the length of the shortest path between i and j (geodesic distance)

• The closeness of a node is defined as the inverse of the sum of the shortest path (SP) distances between the node and all other nodes in the graph



Why inverse the distance?

 Nodes with low mean distance should get high score

Be close to everybody else (e.g., influence on other nodes)

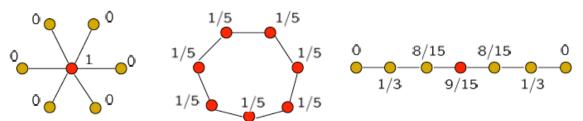
[Mateos, '17]

Betweenness Centrality

Motivation: a node is important if it lies in many shortest paths

$$C_{bt}(i) = \sum_{s \neq i \neq t \in V} \frac{\sigma(s, t|i)}{\sigma(s, t)}$$

- $\sigma(s, t)$ is the total number of shortest paths from s to t
- $\sigma(s, t|v)$ is the number of shortest paths from s to t that pass through i



Essential nodes in passing information through the network

Oftentimes it is normalized: $\frac{C_{bt}(i)}{\binom{n-1}{2}}$

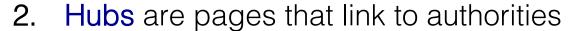
The HITS Algorithm

(Hubs and Authorities)

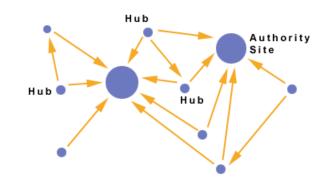
Hubs and Authorities (1/3)

Interesting pages fall into two classes:

- Authorities are pages containing useful information
 - Newspaper home pages
 - Course home pages
 - Home pages of auto manufacturers

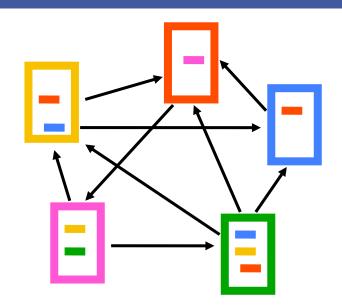


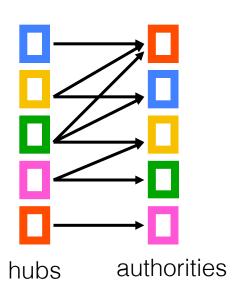
- List of newspapers
- Course bulletin
- List of U.S. auto manufacturers



Hubs and Authorities (2/3)

- Pages have double identity
 - Hub identity
 - Authority identity
- Good hubs point to good authorities
- Good authorities are pointed by good hubs





Hubs and Authorities (3/3)

- Two kind of weights:
 - Hub weight
 - Authority weight
- The hub weight is the sum of the authority weights of the authorities pointed to by the hub
- The authority weight is the sum of the hub weights that point to this authority
- Represented as vectors h and a, where the i th element is the hub/authority score of the i th node

HITS Algorithm

- Initialize: $\alpha_j^0 = 1/\sqrt{n}$, $h_j^0 = 1/\sqrt{n}$
- Repeat until convergence

- Authority:
$$\alpha_i^{(t+1)} = \sum_{j \to i} h_j^{(t)}$$
, $\forall i$

- Hub:
$$h_i^{(t+1)} = \sum_{i \to j} \alpha_j^{(t)}, \quad \forall i$$

- Normalize:
$$\sum_{i} \left(\alpha_i^{(t+1)}\right)^2 = 1 \text{ and } \sum_{j} \left(h_j^{(t+1)}\right)^2 = 1$$

HITS and Eigenvectors

- HITS in vector notation
 - $-\alpha = [\alpha_1, \alpha_2, ..., \alpha_n]^T$ and $h = [h_1, h_2, ..., h_n]^T$
- We can rewrite α_i and h_i based on the adjacency matrix

$$h_i = \sum_{i \to j} \alpha_j$$
 as $h_i = \sum_j \mathbf{A}_{ij} \cdot \alpha_j$

- Thus, $h = A \alpha$ and $\alpha = A^T h$
- $a^{(t+1)} = A^T h^{(t)}$ and $h^{(t+1)} = A a^{(t)}$
- $a^{(t+1)} = A^T A a^{(t)}$ and $h^{(t+1)} = AA^T h^{(t)}$

Repeated iterations will converge to the eigenvectors

SVD

- Authority weight vector a: eigenvector of A^TA
- Hub weight vector h: eigenvector of AAT

The vectors **a** and **h** are the singular vectors of **A**

PageRank

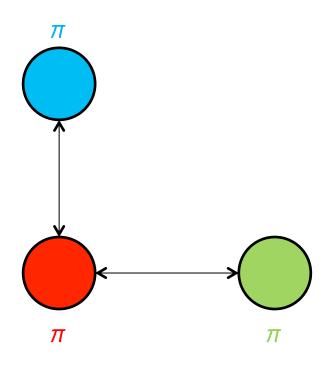
- Good authorities should be pointed by good authorities
 - The value of a node comes from the value of the nodes that point to it
- How do we implement that?
 - Assume that we have a unit of authority to distribute to all nodes
 - Initially, each node gets 1/n amount of authority
 - Each node distributes its authority value to its neighbors
 - The authority value of each node is the sum of the authority fractions that they collect from their neighbors

$$\pi_v = \sum_{\forall (u,v) \in E} \frac{1}{k_{out}(u)} \pi_u$$

 π_{v} : the PageRank value of node v

Recursive definition

A Simple Example



$$\pi + \pi + \pi = 1$$

$$\pi = \pi + \pi$$

$$\pi = \frac{1}{2}\pi$$

$$\pi = \frac{1}{2}\pi$$

$$\pi = \frac{1}{2}\pi$$

 Solving the system of equations we get the authority values for the nodes

$$- \pi = \frac{1}{2} \pi = \frac{1}{4} \pi = \frac{1}{4}$$

A More Complex Example

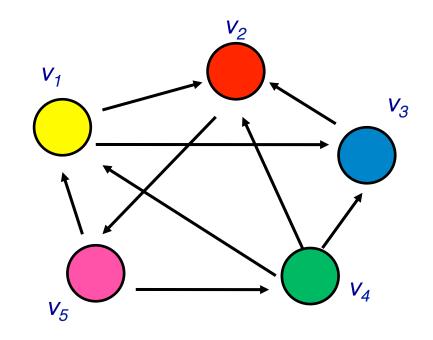
$$\pi_1 = 1/3 \, \pi_4 + 1/2 \, \pi_5$$

$$\pi_2 = 1/2 \, \pi_1 + \pi_3 + 1/3 \, \pi_4$$

$$\pi_3 = 1/2 \, \pi_1 + 1/3 \, \pi_4$$

$$\pi_4 = 1/2 \, \pi_5$$

$$\pi_5 = \pi_2$$



Computing PageRank Weights

 A simple way to compute the weights is by iteratively updating the weights

Initialize all PageRank weights to 1/n

Repeat:

$$\pi_v = \sum_{\forall (u,v) \in E} \frac{1}{k_{out}(u)} \pi_u$$

Until the weights do not change

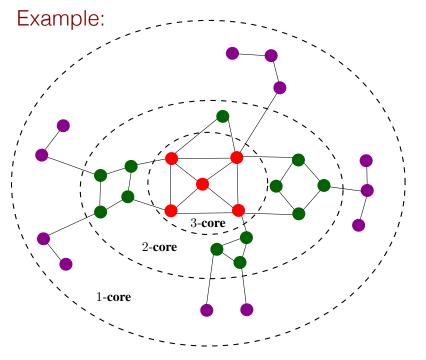
Core decomposition in networks

Core Decomposition

- Tool to analyze the structure of real networks
 - Quantify community and clustering structure
- Hierarchical representation of a graph into nested subgraphs of increased connectivity and coherence properties
- Basic idea:
 - Set a threshold on the node degree, say k
 - Nodes that do not satisfy the threshold are removed from the graph
- Extensions to other node properties (e.g., triangles)
- Plethora of applications
 - Dense subgraph discovery and community detection
 - Evaluation of collaboration in social networks
 - Identification of influential spreaders in social networks
 - Text analytics

k-Core Decomposition

- Degeneracy for an undirected graph G
 - Also known as the k-core number
 - The k-core of G is the largest subgraph in which every vertex has degree at least k within the subgraph



- Core number $c_i = 1$
- lacksquare Core number $c_i = 2$
- igcup Core number $c_i = 3$
- Graph Degeneracy $\delta^*(\mathbf{G}) = \mathbf{3}$
- $G_0 = G$
- $G_1 = 1$ -core of G
- $\mathbf{G_2} = 2$ -core of \mathbf{G}
- $\mathbf{G_3} = 3$ -core of \mathbf{G}
- $G_0 \supseteq G_1 \supseteq G_2 \supseteq G_3$

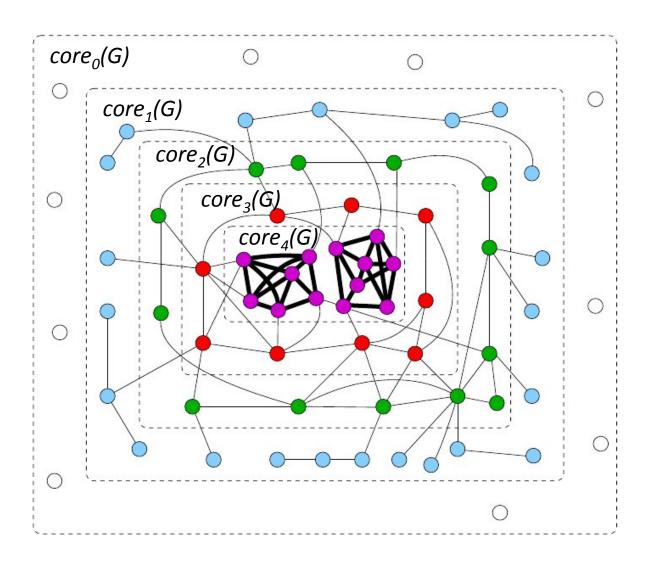
Important property:

- Fast and easy to compute
- Linear to the size of the graph
- Scalable to large scale graphs

Note:

The degeneracy and the size of the k-core provide a good indication of the cohesiveness of the graph

Another Example



Algorithm for k-Core Decomposition

Algorithm k-core(G, k)

Input: An undirected graph G and positive integer k

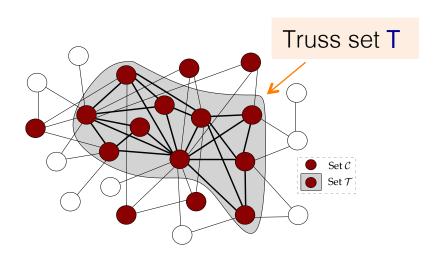
Output: k-core(G)

- 1. let F := G
- 2. while there is a node x in F such that deg_F(x)<k delete node x from F
- 3. return F

- Many efficient algorithms have been proposed for the computation
 - Time complexity: O(m)

K-truss Decomposition (Triangles)

- K-truss decomposition [Cohen '08], [Wang and Cheng '12]
 - Triangle-based extension of the k-core decomposition
 - Each edge of the K-truss subgraph participates in at least K-2 triangles
 - Informally, the "core" of the maximal k-core subgraph
 - Subgraph of higher coherence compared to the k-core



Graph-based text representations

Graph Semantics

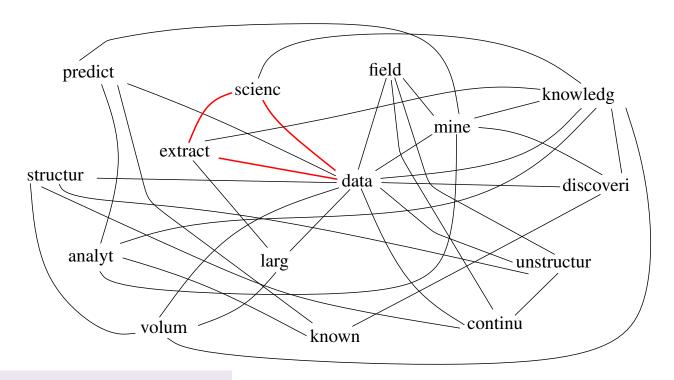
- Let G = (V, E) be the graph that corresponds to a document d
- The nodes can correspond to:
 - Paragraphs
 - Sentences
 - Phrases
 - Words [Main focus of the tutorial]
 - Syllables
- The edges of the graph can capture various types of relationships between two nodes:
 - Co-occurrence within a window over the text [Main focus of the tutorial]
 - Syntactic relationship
 - Semantic relationship

Graph-of-Words (GoW) Model

- Each document $d \in D$ is represented by a graph $G_d = (V_d, E_d)$, where the nodes correspond to the terms t of the document and the edges capture co-occurrence relationships between terms within a fixed-size sliding window of size w
- Directed vs. undirected graph
 - Directed graphs are able to preserve the actual flow of a text
 - In undirected graphs, an edge captures co-occurrence of two terms whatever the respective order between them is
- Weighted vs. unweighted graph
 - The higher the number of co-occurrences of two terms in the document, the higher the weight of the corresponding edge
- Size w of the sliding window
 - Add edges between the terms of the document that co-occur within a sliding window of size w
 - Larger window sizes produce graphs that are relatively dense

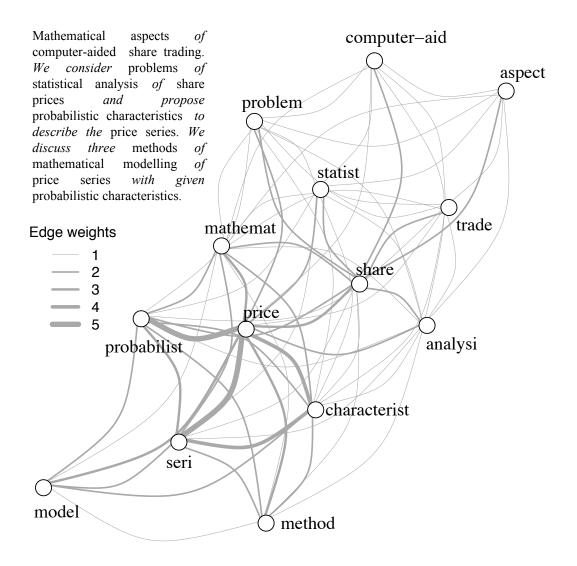
Example of Unweighted GoW

Data Science is the extraction of knowledge from large volumes of data that are structured or unstructured which is a continuation of the field of data mining and predictive analytics, also known as knowledge discovery and data mining.



w = 3unweighted, undirected graph

Example of Weighed Undirected GoW



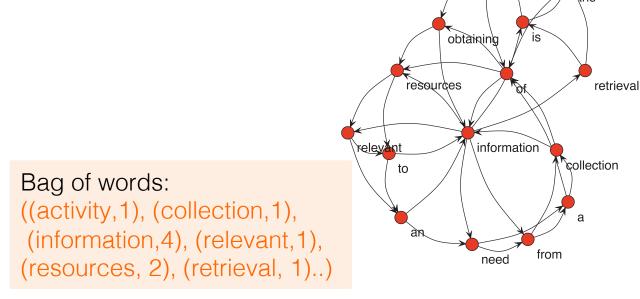
Tutorial Outline

- Part I. Graph-theoretic concepts and graph-based text representation
- Part II. Information retrieval
- Part III. Keyword extraction and text summarization
- Part IV. Text categorization
- Part V. Final remarks and future research directions

In-degree based TW

- The weight of a term in a document is its in-degree in the graph-of-words
- It represents the number of distinct contexts of occurrence
- We store the document as a vector of weights in the direct index and similarly in the inverted index

•	For example:	
	information	5
	retrieval	1
	is	2
	the	2
	activity	2
	of	3
	obtaining	2 2 3 2 3 2 2 2 2 2 2 2 2
	resources	3
	relevant	2
	to	2
	an	2
	need	2
	from	2
	a	2
	collection	2



activity

TF-IDF and BM25

- Term t, document d, collection of size N, term frequency tf(t, d), document frequency df(t), document length |d|, average document length avdl, asymptotical marginal gain k₁ (1.2), slope parameter b
- TF-IDF [Singhal et al., TREC-7] $\text{TF-IDF}(t, d) = \text{TF}_{pol}\text{-IDF}(t, d) = \text{TF}_{poTF}(t, d) \times \text{IDF}(t) = \left(\frac{1 + \log\left(1 + \log\left(tf(t, d)\right)\right)}{1 b + b \times \frac{||d||}{avdl}}\right) \times \log\left(\frac{N + 1}{df(t)}\right)$
- BM25 [Lv and Zhai, CIKM '11]

BM25(t, d) =
$$\left(\frac{(k_1 + 1) \times tf(t, d)}{k_1 \times \left(1 - b + b \times \frac{|d|}{avdl}\right) + tf(t, d)} \right) \times \log \left(\frac{N + 1}{df(t)} \right)$$

TW-IDF

• Term t, document d, collection of size N, term weight tw(t, d), document frequency df(t), document length |d|, average document length avdl, asymptotical marginal gain k_1 (1.2), slope parameter b

TW-IDF(t, d) =
$$\left(\frac{tw(t,d)}{1 - b + b \times \frac{|d|}{avdl}} \right) \times \log \left(\frac{N+1}{df(t)} \right)$$

- In the bag-of-word representation, tw is usually defined as the term frequency or sometimes just the presence/absence of a term (binary tf)
- In the graph-of-word representation, tw is the in-degree of the vertex representing the term in the graph

Experimental Evaluation

- Datasets
- Platforms
- Evaluation
- Results

Datasets (1/2)

- Disks 1 & 2 (TREC)
 - 741,856 news articles from Wall Street Journal (1987-1992), Federal Register (1988-1989), Associated Press (1988-1989 and Information from the Computer Select disks (1989-1990)
- Disks 4 & 5 (TREC, minus the Congressional Record) 528,155 news releases from Federal Register (1994), Financial Times (1991-1994), Foreign Broadcast Information Service (1996) and Los Angeles Times (1989-1990)
- WT10G (TREC)
 1,692,096 crawled pages from a snapshot of the Web in 1997
- .GOV2 (TREC) 25,205,179 crawled Web pages from .gov sites in early 2004

Datasets (2/2)

Dataset	Disks 1 & 2	Disks 4 & 5	WT10G	.GOV2	
Statistic					
# of documents	741,856	528,155	1,692,096	25,205,179	
# of unique terms	535,001	520,423	3,135,780	15,324,292	
average # of terms (avdl)	237	272	398	645	
average # of vertices	125	157	165	185	
average # of edges	608	734	901	1,185	

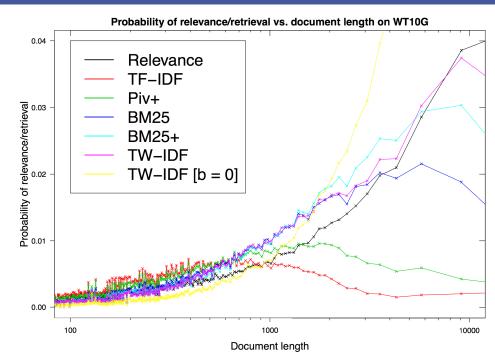
Table: Statistics on the four TREC datasets used; Disks 4&5 excludes the Congressional Record. The average values are computed per document.

Evaluation

- Mean Average Precision (MAP) and Precision at 10 (P@10)
 - Considering only the top-ranked 1000 documents for each run
- Statistical significance of improvement was assessed using the Student's paired t-test
 - R implementation (t.test {stats} package), trec_eval output as input
 - Two-sided p-values less than 0.05 and 0.01 to reject the null hypothesis
- Likelihood of relevance vs. likelihood of retrieval [Singhal et al., SIGIR '96]
- 4 baseline models: TF-IDF, BM25, Piv+ and BM25+
 - Tuned slope parameter b for pivoted document length normalization (2-fold cross-validation, odd vs. even topic ids, MAP maximization)
 - Default (1.0) lower-bounding gap [Lv and Zhai, CIKM '11]

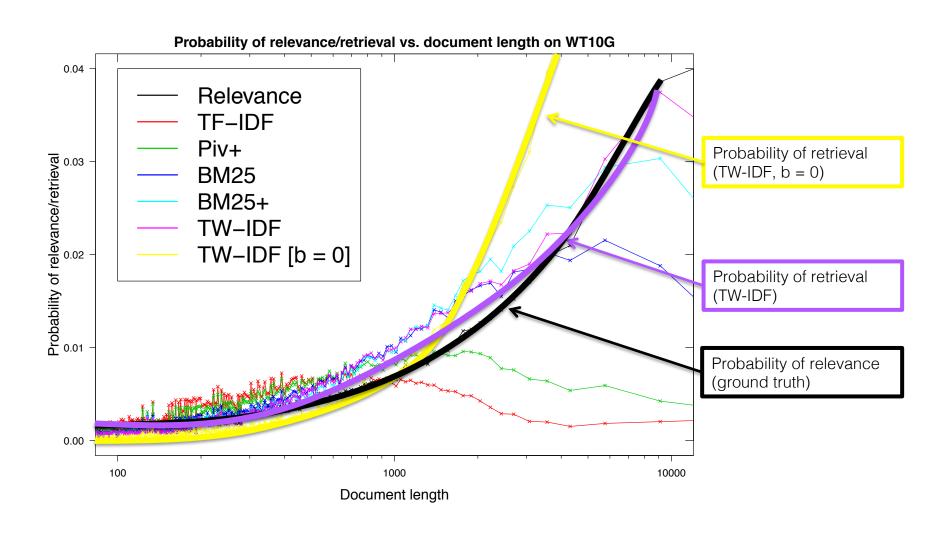
Graph-based Ad Hoc IR

- Evaluation in terms of:
 - Mean Average Precision
 - Precision@10
 - Probability of relevance vs. probability of retrieval



Model b	b	TREC1-3	3 Ad Hoc	Ad Hoc TREC 200		04 Robust TREC9-		TREC 2004-2006 Terabyte	
Wiodei		MAP	P@10	MAP	P@10	MAP	P@10	MAP	P@10
$\mathrm{TF}_{p \circ l}$	0.20	0.1471	0.3960	0.1797	0.3647	0.1260	0.1875	0.1853	0.4913
$\mathrm{TF}_{k \circ p}$	$\mid 0.75 \mid$	0.1346	0.3533	0.2045	0.3863	0.1702	0.2208	0.2527	0.5342
$\mid \text{TW} \mid$	none	0.1502	0.3662	0.1809	0.3273	0.1430	0.1979	0.2081	0.5021
TW_p	0.003	0.1576**	0.4040**	0.2190**	0.4133**	0.1946**	0.2479**	0.2828**	0.5407**
TF-IDF	0.20	0.1832	0.4107	0.2132	0.4064	0.1430	0.2271	0.2068	0.4973
BM25	$\mid 0.75 \mid$	0.1660	0.3700	0.2368	0.4161	0.1870	0.2479	0.2738	0.5383
TW-IDF	0.003	0.1973**	0.4148*	0.2403**	0.4180*	0.2125**	0.2917**	0.3063**	0.5633**

Likelihood of Relevance vs. Likelihood of Retrieval



Tutorial Outline

- Part I. Graph-theoretic concepts and graph-based text representation
- Part II. Information retrieval
- Part III. Keyword extraction and text summarization
- Part IV. Text categorization
- Part V. Final remarks and future research directions

Single Document Keyword Extraction

Keywords are used everywhere

- Looking up information on the Web (e.g., via a search engine bar)
- Finding similar posts on a blog (e.g., tag cloud)
- For ads matching (e.g., AdWords' keyword planner)
- For research paper indexing and retrieval (e.g., SpringerLink)
- For research paper reviewer assignment

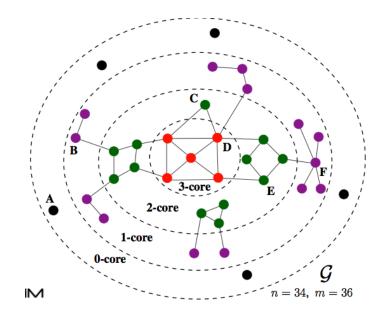
Applications are numerous

- Summarization (to get a gist of the content of a document)
- Information filtering (to select specific documents of interest)
- Indexing (to answer keyword-based queries)
- Query expansion (using additional keywords from top results)

Graph-based Keyword Extraction (1/2)

Existing graph-based keyword extractors:

- Assign a centrality based score to a node
- Top ranked ones will correspond to the most representative
- TextRank (PageRank) [Mihalcea and Tarau, EMNLP '04]
- HITS [Litvak and Last, MMIES '08]
- Node centrality (degree, betweenness, eigenvector) [Boudin, IJNLP '13]



k-core decomposition of the graph

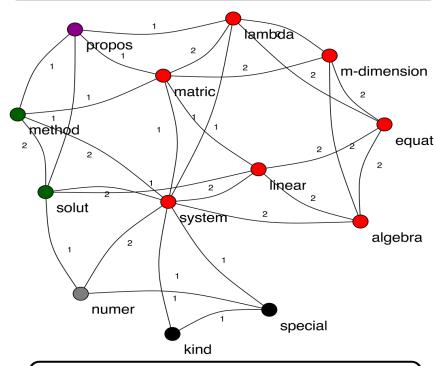
Idea: retain the k-core subgraph of the graph to extract the nodes based on their centrality and cohesiveness

Graph-based Keyword Extraction (2/2)

- Single-document keyword extraction
 - Select the most cohesive sets of words in the graph as keywords
 - Use k-core decomposition to extract the main core of the graph
 - Weighted edges

A method for solution of systems of linear algebraic equations with m-dimensional lambda matrices.

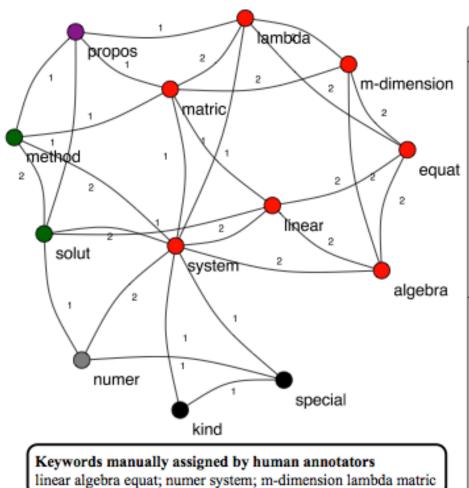
A system of linear algebraic equations with m-dimensional lambda matrices is considered. The proposed method of searching for the solution of this system lies in reducing it to a numerical system of a special kind.



Keywords manually assigned by human annotators

linear algebra equat; numer system; m-dimension lambda matric

PageRank vs. k-core



WK-core	9	PageRank				
system	6	system	1.93			
matric	6	matric	1.27			
lambda	6	solut	1.10			
linear	6	lambda	1.08			
equat	6	linear	1.08			
algebra	6	equat	0.90			
m-dim	6	algebra	0.90			
method	5	m-dim	0.90			
solut	5	propos	0.89			
propos	4	method	0.88			
numer	3	special	0.78			
specia	2	numer	0.74			
kind	2	kind	0.55			

Keywords are not Unigrams

- 500 abstracts from the *Inspec* database used in our experiments,
- 4,913 keywords manually assigned by human annotators
- only 662 are unigrams (13%).
- Bigrams (2,587 52%) ... 7-grams (5).
- ⇒ keywords are bigrams, if not higher order n-grams.
- ⇒ the interactions within keywords need to be captured in the first place i.e. in the graph.
- ⇒ we can consider a k-core to form a "long-distance (k+1)-gram" [Bassiou and Kotropoulos, 2010]

How Many Keywords?

- Most techniques in keyword extraction assign a score to each feature and then take the top ones
- But how many?
 - Absolute number (top X) or relative number (top X%)?
- Besides, at fixed document length, humans may assign more keywords for a document than for another one

X is decided at document level (size of the k-core subgraph)

k-cores are adaptive

Datasets

- Hulth2003 500 abstracts from the Inspec database [Hulth, 2003]
- Krapi2009 2,304 ACM full papers in Computer Science (references and captions excluded) [Krapivin et al., 2009]

All approaches are unsupervised and single-document

Models and Baseline Methods

Graph-of-words:

- Undirected edges
- Forward edges
 - Natural flow of the text
 - An edge term1 → term2 meaning that term1 precedes term2 in a sliding window
- Backward edges

Keyword extractors:

- PageRank
- HITS (authority scores only)
- k-core
- Weighted k-core

Top 33% or top 15% keywords

Main core

Evaluation Metrics

- Each document has a set of golden keywords assigned by humans
 - precision, recall and F1-score per document
 - macro-average each metric at the collection level

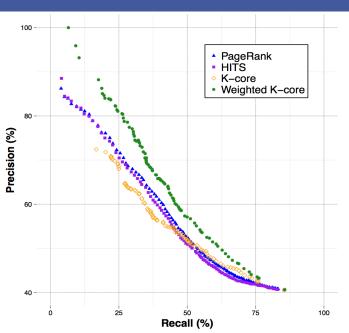
Performance Evaluation

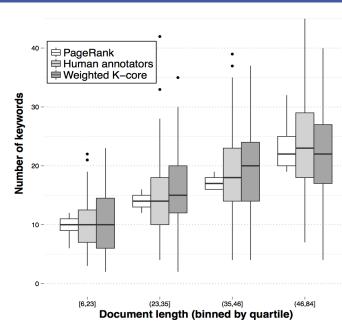
Precision

Recall

F1-score

Precision/recall





Graph Dataset	Macro-averaged precision (%)			Macro-averaged recall (%)			Macro-averaged F1-score (%)						
	Dataset	PageRank	HITS	K-core	WK-core	PageRank	HITS	K-core	WK-core	PageRank	HITS	K-core	WK-core
undirected	Hulth2003	58.94	57.86	46.52	61.24*	42.19	41.80	62.51*	50.32*	47.32	46.62	49.06*	51.92*
edges	Krapi2009	50.23	49.47	40.46	53.47*	48.78	47.85	78.36*	50.21	49.59	47.96	46.61	50.77*
forward	Hulth2003	55.80	54.75	42.45	56.99*	41.98	40.43	72.87*	46.93*	45.70	45.03	51.65*	50.59*
edges	Krapi2009	47.78	47.03	39.82	52.19*	44.91	44.19	79.06*	45.67	45.72	44.95	46.03	47.01*
backward	Hulth2003	59.27	56.41	40.89	60.24*	42.67	40.66	70.57*	49.91*	47.57	45.37	45.20	50.03*
edges	Krapi2009	51.43	49.11	39.17	52.14*	49.96	47.00	77.60*	50.16	50.51	47.38	46.93	50.42

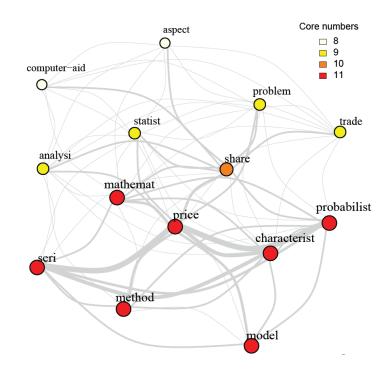
Example – ECIR'15 Paper

- Stemmed unigrams of the main core of the graph- of-words of the paper document: {keyword, extract, graph, represent, text, weight, graph-of-word, k-core, degeneraci, edg, vertic, number, document}
- Using PageRank, "work" appears in the top 5, "term" and "pagerank" in the top 10, and "case" and "order" in the top 15. Central words but not in cohesion with the rest and probably not relevant

A Different Point of View

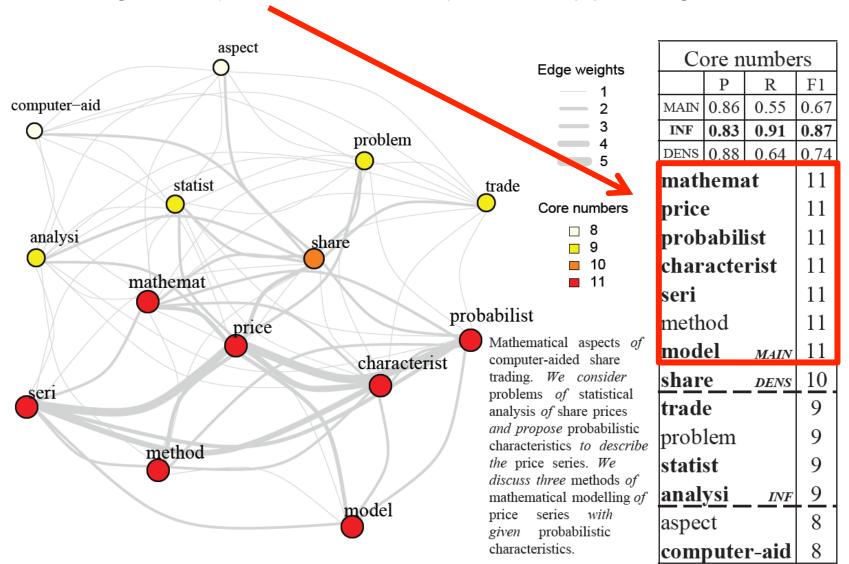
Graph degeneracy:

- In social networks, nodes part of the highest levels of the hierarchy are better spreaders than nodes high on PageRank
- Nodes with high truss numbers are even more influential than nodes with high core numbers
- Spreading influence may be a better "keywordness" metric than prestige (captured by PageRank)



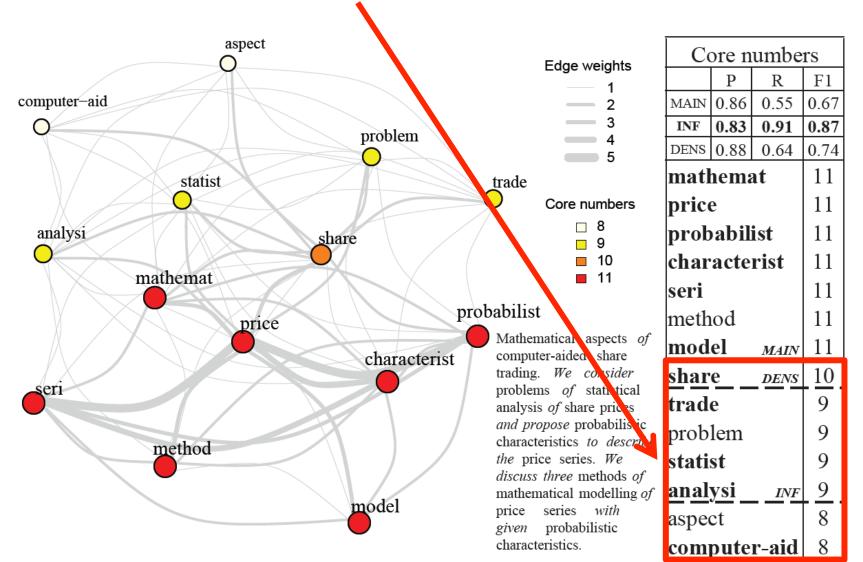
Drawbacks of Graph Degeneracy (1/4)

Retaining the top level like in may be an appealing initial idea



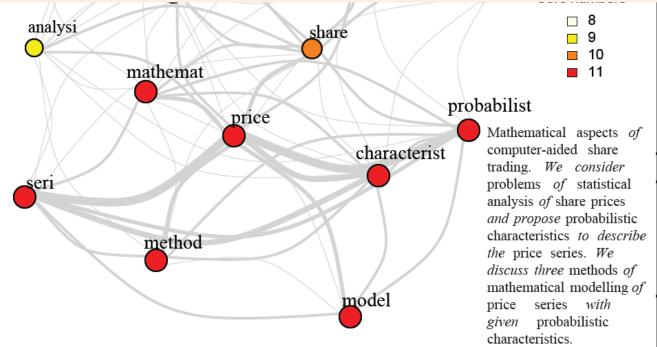
Drawbacks of Graph Degeneracy (2/4)

But many keywords live below the top level -> good precision, poor recall



Drawbacks of Graph Degeneracy (3/4)

How to automatically select the best level in the hierarchy?



Price	* *
probabilist	11
characterist	11
seri	11
method	11
model MAIN	11
share DENS	10
trade	9
problem	9
statist	9
analysi <u>INF</u>	9
aspect	8
computer-aid	8

Drawbacks of Graph Degeneracy (4/4)

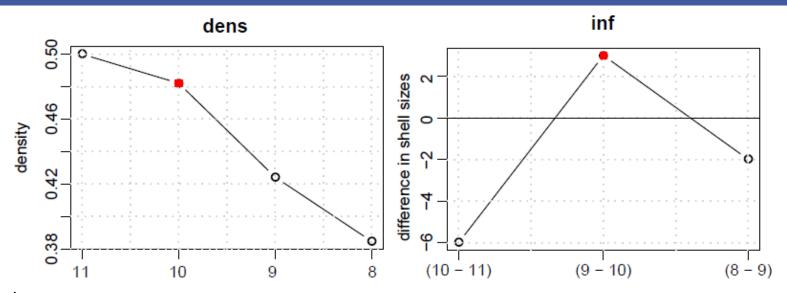
How to automatically select the best level in the hierarchy?

In order to improve recall while not losing too much in precision?

the price series. We discuss three methods of mathematical modelling of price series with given probabilistic characteristics.

statist	9
analysi <u>I</u> NF	9
aspect	8
computer-aid	8

Graph Degeneracy for Keyword Extraction

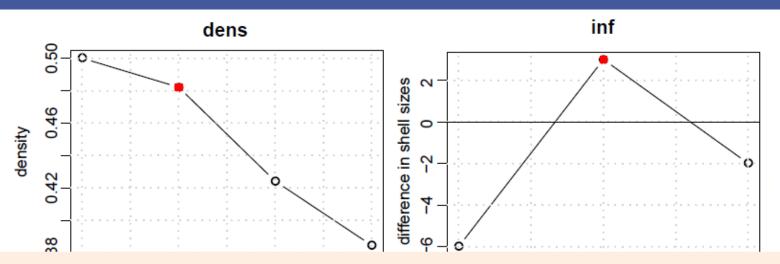


Heuristics:

- dens: go down the hierarchy until a drop in k-core (or truss) density is observed, i.e., as long as the desirable cohesiveness properties are kept
- inf: go down the hierarchy as long as the shells increase in size (starting at the main – 1 level)

Problem: both methods work at the subgraph level -> lack flexibility for large graphs (adding an entire group of nodes or not)

Graph Degeneracy for Keyword Extraction

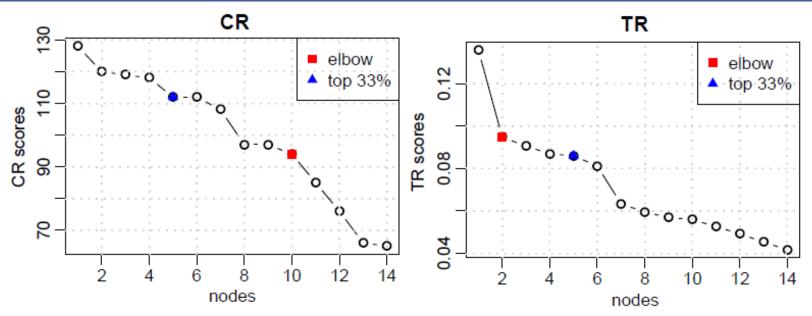


How to work at the node level while still retaining the valuable cohesiveness information captured by degeneracy?

 inf: go down the hierarchy as long as the shells increase in size (starting at the main – 1 level)

Problem: both methods work at the subgraph level -> lack flexibility for large graphs (adding an entire group of nodes or not)

CoreRank

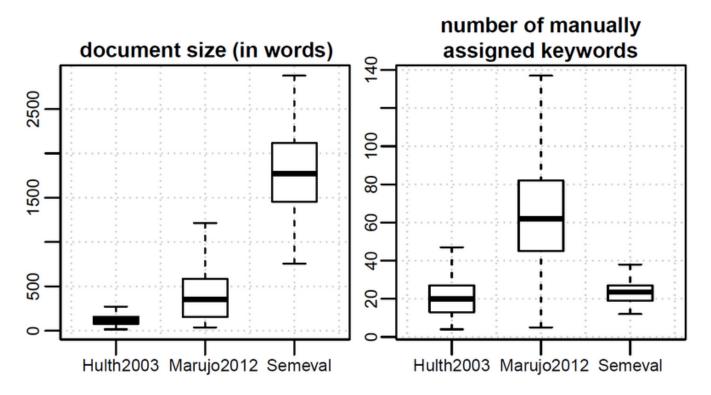


CoreRank (CR):

- Assign to each node the sum of the core (or truss) numbers of its neighbors
- Granularity is much finer and allows for much flexible selection
- Comparable to applying PageRank to the graph-of-words (aka TextRank) but taking into account cohesiveness concerns rather than individual prestige only

Heuristics: nodes can be selected based on the elbow or top p% method

CoreRank – Experimental Evaluation (1/2)



Datasets

- Hulth2003: 500 abstracts from the Inspec physics & engineering database
- Marujo2012: 450 web news stories covering 10 different topics
- Semeval: 100 scientific papers from the ACM

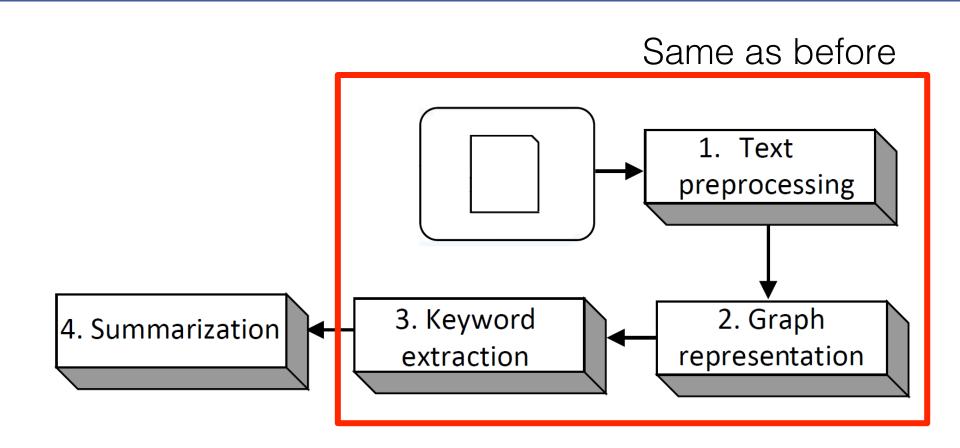
CoreRank – Experimental Evaluation (2/2)

	precision	recall	F1-score		precision	recall	F1-score		precisior	recall	F1-score
dens	48.79	72.78	56.09*	dens	47.62	71.46	52.94*	dens	8.44	79.45	15.06
inf	48.96	72.19	55.98*	inf	53.88	57.54	49.10*	inf	17.70	65.53	26.68
CRP	61.53	38.73	45.75	CRP	54.88	36.01	40.75	CRP	49.67	32.88	38.98*
CRE	65.33	37.90	44.11	CRE	63.17	25.77	34.41	CRE	25.82	58.80	34.86
main†	51.95	54.99	50.49	main†	64.05	34.02	36.44	main†	25.73	49.61	32.83
TRP†	65.43	41.37	48.79	TRP†	55.96	36.48	41.44	TRP [†]	47.93	31.74	37.64
TRE [†]	71.34	36.44	45.77	TRE [†]	65.50	21.32	30.68	TRE [†]	33.87	46.08	37.55
Hulth2003	, K-truss,	W = 11.	*stat. sign.	Marujo201	2, k -cor	W = 13.	*stat. sign.	Semeval,	K-truss, V	V = 20. *s	stat. sign.
(p < 0.001) w.r.t. all baselines [†]			(p < 0.00)	1) w.r.t. all	baselines	s [†]	(p < 0.00)	1) w.r.t. m	ain		

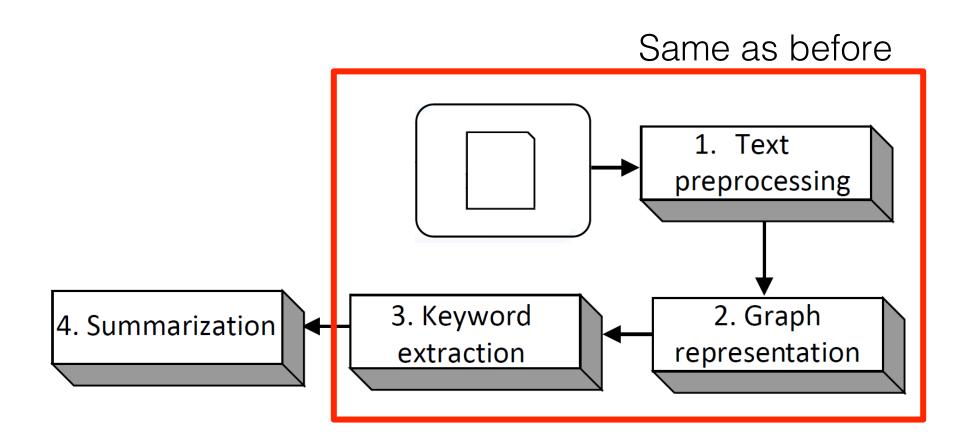
- For small documents (i.e., small graphs), the subgraph-level heuristics significantly outperform main core retention (main) and TextRank (TRP, TRE)
- Recall is drastically improved, precision is maintained (especially with inf)
- For long documents (Semeval), the node-level heuristics are better
- CoreRank with top p% retention (CRP) reaches best performance

Extractive summarization

Extension to Extractive Document Summarization



Extension to Extractive Document Summarization



How to use keywords (and their scores) to select the best sentences in a document?

Extractive Document Summarization (1/4)

- Generating a summary in an extractive way is akin to selecting the best sentences in the document under a budget constraint (max number of words allowed)
- Combinatorial optimization task:

$$\arg\max_{S\subseteq V} F(S) \mid \sum_{v\in S} c_v \le B$$

- S is a given summary (a subset of the set of sentences V)
- F is the objective function to maximize (measuring summary quality)
- C_v is the cost of sentence v (number of words it contains)
- B is the budget (in words)

Extractive Document Summarization (2/4)

$$\arg\max_{S\subseteq V} F(S) \mid \sum_{v\in S} c_v \le B$$

- Solving this task is NP-complete
- It has been shown that if F is non-decreasing and submodular, a greedy
 - algorithm can approach the best solution with factor (e 1)/e
- At each step, the algorithm selects the sentence v that maximizes:

r is a tuning parameter

Extractive Document Summarization (3/4)

$$\arg\max_{S\subseteq V} F(S) \mid \sum_{v\in S} c_v \le B$$

- The choice of F, the summary quality objective function, is what matters
- A good summary should cover all the important topics in the document, while not repeating itself
 - Maximize coverage
 - Penalize redundancy (reward diversity to ensure monotonicity)

$$F(S) = L(S) + \lambda R(S)$$

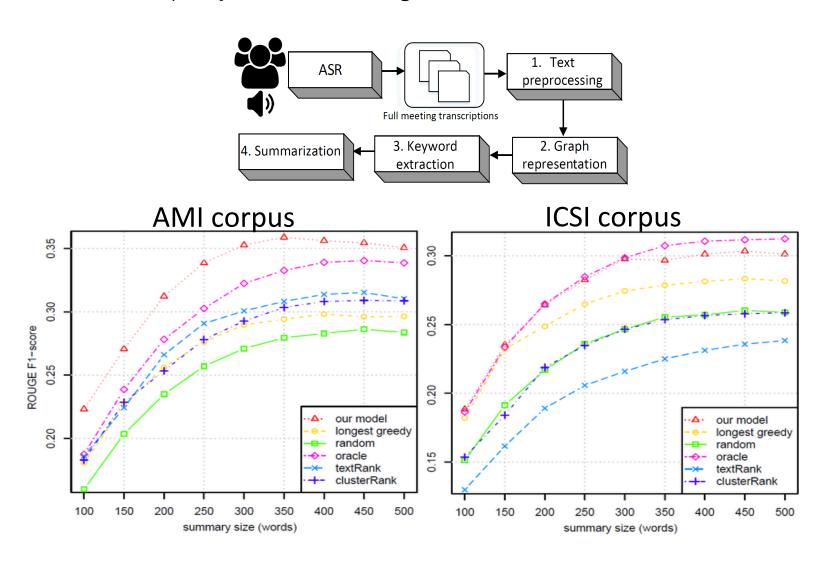
$$L(S) = \sum_{i \in S} n_i w_i \quad R(S) = N_{keywords \in S} / N_{keywords}$$

weighted sum of the keywords contained in the summary

proportion of unique keywords contained

Extractive Document Summarization (4/4)

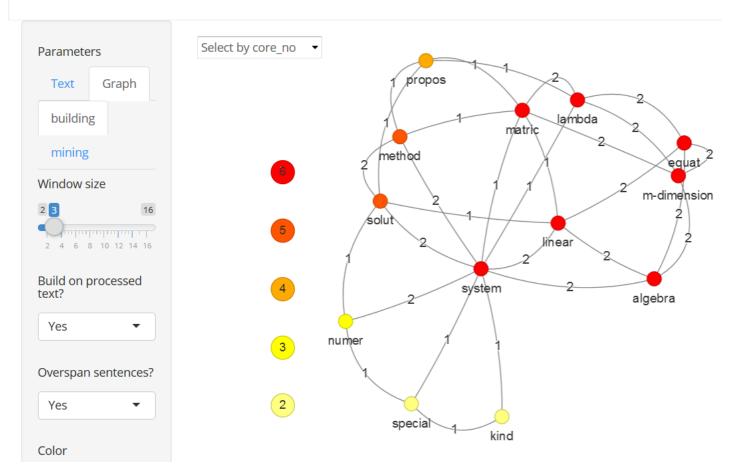
Tested for multiparty virtual meetings summarization:



GoWvis visualization tool

GoWvis Visualization Tool

A method for solution of systems of linear algebraic equations with m-dimensional lambda matrices. A system of linear algebraic equations with m-dimensional lambda matrices. A system of linear algebraic equations with m-dimensional lambda matrices. A system of linear algebraic equations with m-dimensional lambda matrices. A system of linear algebraic equations with m-dimensional lambda matrices. A system of linear algebraic equations with m-dimensional lambda matrices. A system of linear algebraic equations with m-dimensional lambda matrices.



https://safetyapp.shinyapps.io/GoWvis/

[Tixier et al., ACL '16]

GoWvis

- Builds a graph-of-words and displays an interactive representation of any text pasted by the user
- Allows the user to tune many parameters:
 - Text pre-processing (stopword removal, ...)
 - Graph building (window size, ...)
 - Graph mining (node ranking and community detection algorithms, ...)
- Extracts keyphrases and generates a summary of the input text
- Built in R Shiny with the visNetwork library

https://safetyapp.shinyapps.io/GoWvis/

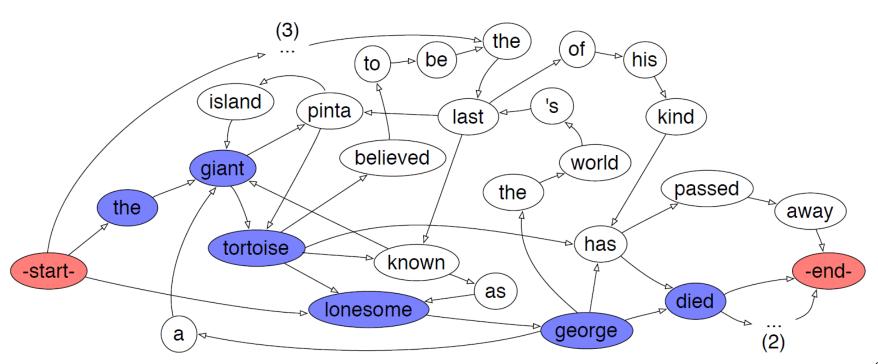
Multi-sentence compression in word graphs

Multi Sentence Compression/Fusion

- Setting: we are given a group of similar sentences (e.g., first sentence of each article on a Google News cluster). Each sentence contains important bits of information. Collectively, the sentences cover everything, but none single sentence 'gets it all'
- Goal: fuse the sentences into a single, compact one, that contains as much information as possible while being fluent and grammatical
- Method: many approaches can be used. However, it is possible to produce excellent results in a fully unsupervised way, with only a list of stopwords and a part-of-speech tagger

Word-graph Sentence Compression

- 1) Lonesome George, the world's last Pinta Island giant tortoise, has passed away
- 2) The giant tortoise known as Lonesome George died Sunday at the Galapagos National Park in Ecuador
- 3) He was only about a hundred years old, but the last known giant Pinta tortoise, Lonesome George, has passed away
- 4) Lonesome George, a giant tortoise believed to be the last of his kind, has died



Word-graph Construction

- Build a directed graph from the first sentence, with 'start' and 'end' nodes.
 Then, consider each word in the remaining sentences.
- i. if the word is not a stopword, and if there is already a node in the graph for it (with same lowercased spelling and POS tag), and assuming that no word from the same sentence has already been mapped onto the node => map word to the node
- Otherwise:
- ii. if the word is not a stopword, but there are more than one candidate in the graph or multiple occurrences of the word in the sentence
- iii. if the word is a stopword
- => select the candidate which has larger overlap in context (preceding and following words in sentence and neighbors in the graph), or the node which has more words mapped onto it

Word-graph Construction

Edge weights (the smaller the better):

$$w''(e_{i,j}) = \frac{w'(e_{i,j})}{\operatorname{freq}(i) \times \operatorname{freq}(j)} \tag{1}$$

Where:

$$w'(e_{i,j}) = \frac{\operatorname{freq}(i) + \operatorname{freq}(j)}{\sum_{s \in S} \operatorname{diff}(s, i, j)^{-1}}$$
(2)

- freq(i) is the number of words that have been mapped to node i
- diff(s,i,j) is the distance between word i and word j in sentence s
- Intuition for (2):
 - edges between strongly associated words are given more importance, taking into account the overall freq. of the nodes (edge freq. of 3 should count more if the edge connects 2 nodes with freq. 3 rather than with freq. >>3)
 - Connections between nodes between which there are multiple paths are also given more importance, proportionally to the lengths of the paths

Word-graph Construction

Edge weights (the smaller the better):

$$w''(e_{i,j}) = \frac{w'(e_{i,j})}{\operatorname{freq}(i) \times \operatorname{freq}(j)} \tag{1}$$

Where:

$$w'(e_{i,j}) = \frac{\operatorname{freq}(i) + \operatorname{freq}(j)}{\sum_{s \in S} \operatorname{diff}(s, i, j)^{-1}}$$
(2)

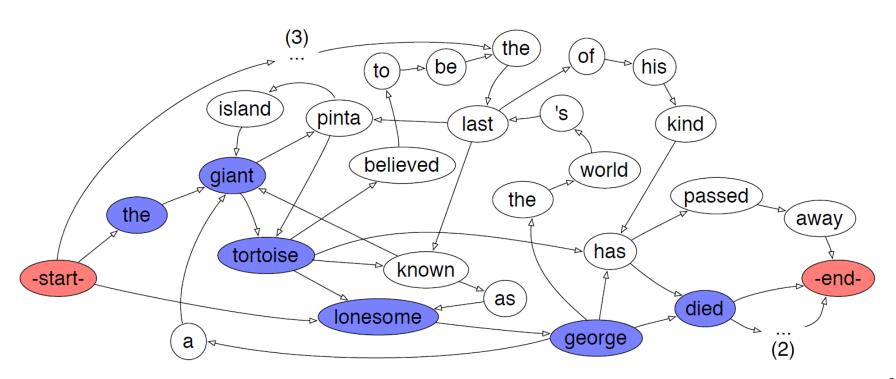
- freq(i) is the number of words that have been mapped to node i
- diff(s,i,j) is the distance between word i and word j in sentence s
- Intuition for (1):
 - Eq. (2) is a measure of cohesion between 2 words, but disregards the individual importance of the words => we need to take saliency into account. Edges connecting two important words are thus favored.

Path Ranking and Selection

- A K-shortest paths algorithm is applied on the graph to find the 50 paths with smallest edge weights
- All the paths which are shorter than eight words and do not contain a verb are filtered out
- The survivors are re-ranked by normalizing the total path weight over its length
- The path which has the lightest average edge weight is finally considered as the best compression

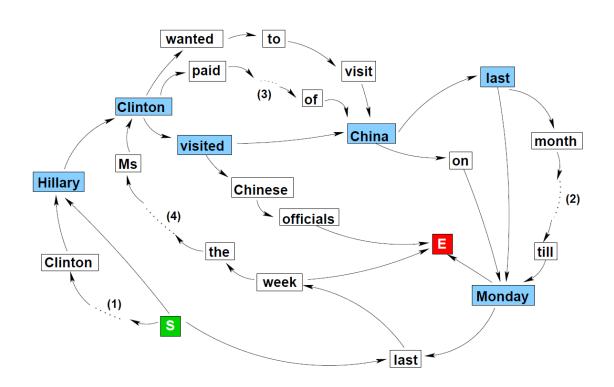
Examples

- 1) Lonesome George, the world's last Pinta Island giant tortoise, has passed away
- 2) The giant tortoise known as Lonesome George died Sunday at the Galapagos National Park in Ecuador
- 3) He was only about a hundred years old, but the last known giant Pinta tortoise, Lonesome George, has passed away
- 4) Lonesome George, a giant tortoise believed to be the last of his kind, has died



Examples

- 1) The wife of a former U.S. president Bill Clinton Hillary Clinton visited China last Monday
- 2) Hillary Clinton wanted to visit China last month but postponed her plans till Monday last week
- 3) Hillary Clinton paid a visit to the People Republic of China on Monday
- 4) Last week the Secretary of State Ms. Clinton visited Chinese officials



Lessons Learned

- Syntactic parsers, language models, and/or handcrafted rules are not the only way of controlling the grammaticality of the output
- Redundancy provides a reliable way of generating grammatical sentences

Event detection in text streams

Sub-event Detection in Twitter Streams

- 1. Large volume of documents in social media
- 2. Events are not covered by traditional media
- 3. News appear fast in Twitter
- 4. Is Tweet rate suited for sub-event Detection?

Contribution:

A novel real-time detection mechanism that accurately detects sub-events in an unsupervised and out-ofthe-box manner

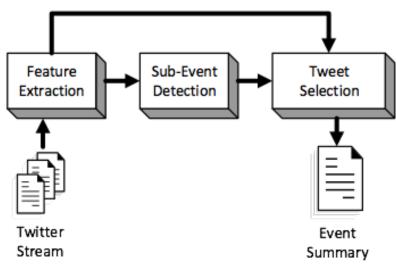


Tweet Rate histogram of a football match

Sub-event Detection in Twitter Streams

Real time event summarization

- Feature extraction: extracts the terms that best describe the current state of the event
- 2. Sub-event detection: decides whether a sub-event has occurred
- 3. Tweet selection: ranks all the tweets and selects the first one



System Architecture

- Steps are repeated every 60 seconds
- The summary of the whole event is constructed by aggregating the individual sub-event descriptions

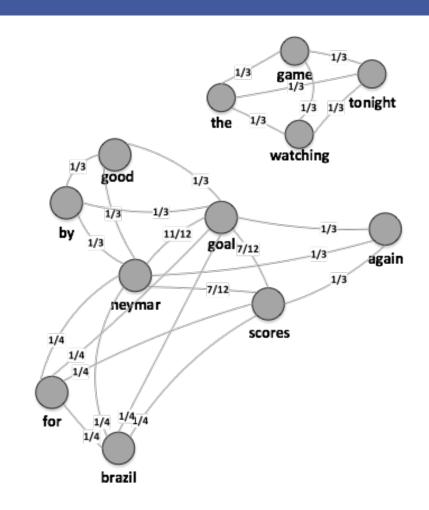
Graph-based Representation of Tweets

- Represents all the input tweets
- Nodes: unique terms
- Edges: #co-occurrences within a tweet

Example graph

- Good goal by Neymar
- 2. Goal! Neymar scores for brazil
- 3. Goal!! Neymar scores again
- 4. Watching the game tonight

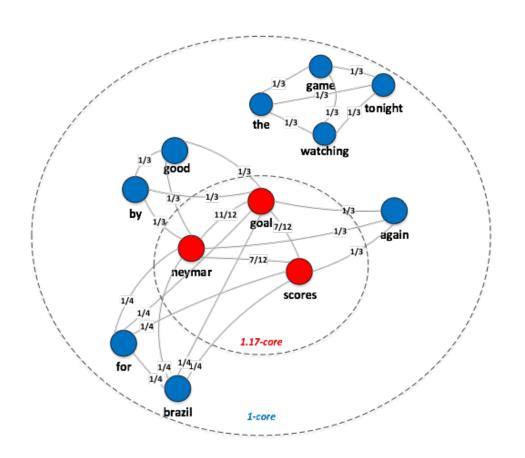
Dataset: tweets from the 2014 FIFA World Cup in Brazil



The graph that was built from 4 tweets

k-core Decomposition for Feature Extraction

- Each term is given a score corresponding to its core number
- Extract the k-core subgraph
- Detect sub-events by considering how the sum of the core numbers extracted from the graph at time t has changed from a previous time point t-1



k-core decomposition of the Graph-of-Words

Sub-event Detection

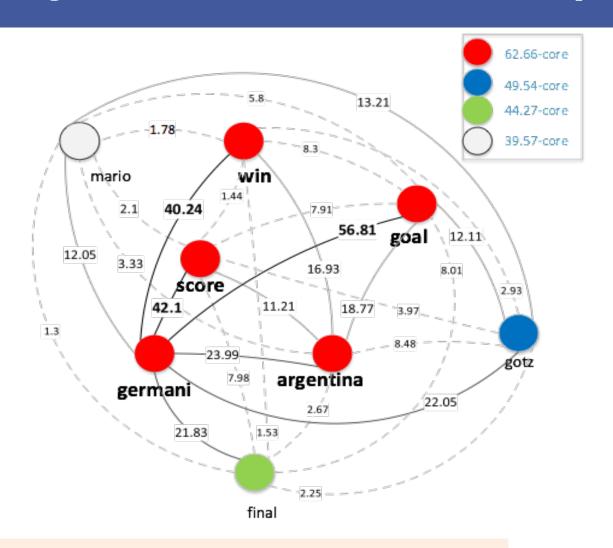
$$\sum_{i=1}^{d} c_i^t > \theta \times \frac{1}{p} \sum_{i=t-p}^{t-1} \sum_{i=1}^{d} c_i^j$$

- c_i^t Core number of term at time slot
- d Number of terms selected
- θ Decision Threshold
- p Number of previous time slots

Sub-event Detection steps: (every 60 seconds)

- 1. Extract the top terms with highest weights
- 2. Sum the term weights
- If it exceeds the threshold a subevent is detected

Germany's Goal - 2014 World Cup

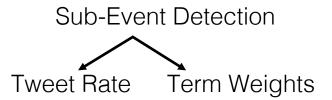


Snapshot of the four highest cores of the graph generated after Germany's goal in the 2014 FIFA World Cup final

Tweet Selection as Sub-event Summarization

- Activated only if a sub-event has been detected
- Tweets are scored based on the sum of their term weights
- Selects the most informative tweet of the sub-event
 - The tweet with the highest score is chosen

Expreimental Setup



Sub-Event Summarization

Frequency of terms Core number of terms

Baselines-Approaches

(Detection -Term Weight)

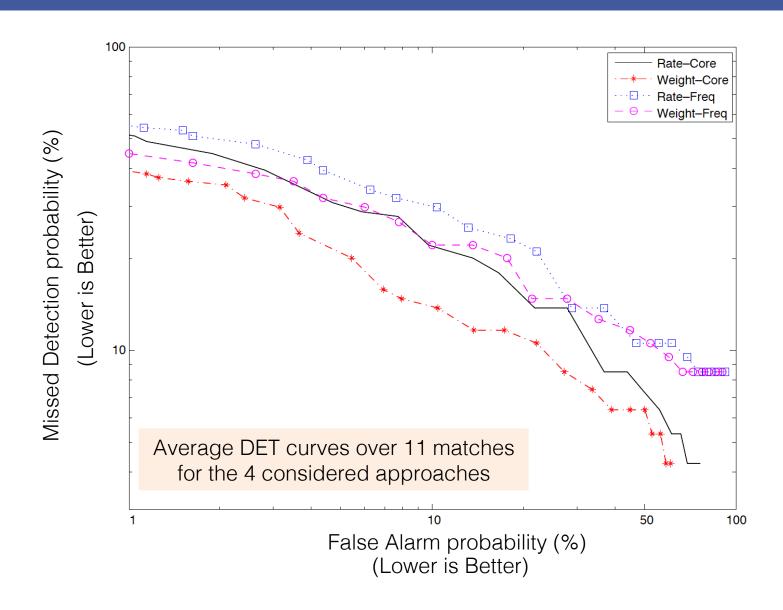
- > Rate-Freq: the common baseline
- ➤ Rate-Core
- ➤ Weight-Core: Our approach
- ➤ Weight–Freq

Dataset

Match	#sub-events	#tweets
Germany - Argentina	8	1,907,999
Argentina - Belgium	7	1,355,472
France - Germany	6	1,321,781
Honduras-Switzerland	7	168,519
Greece - Ivory Coast	10	251,420
Croatia - Mexico	11	600,776
Cameroon - Brazil	11	532,756
Netherlands - Chile	7	301,067
Australia - Spain	9	252,086
Germany - Ghana	8	718,709
Australia - Netherlands	11	126,971
All Matches	95	7,537,556

FIFA 2014 World Cup Dataset

Evaluation (1/2)



Evaluation (2/2)

Method	Micro F1-score	Macro F1-score
Weight-Core	0.68	0.72
Rate-Core	0.61	0.63
Weight-Freq	0.61	0.64
Rate-Freq	0.54	0.60

Average micro and macro F1-score over 11 matches for the 4 considered approaches

Event type	#actual Events	#detected Events
Goal	32	30
Penalty	2	2
Red Card	1	0
Yellow Card	27	14
Match Start	11	8
Match End	11	11
Half Time	11	10

Number of sub-events detected

Tweet Summarization Performance

Time	Summary	ESPN FC
8'	Goal!!!!Argentina!! After eight minutes Argentina lead Belgium by 1-0 scored by Higuain	Goal! Argentina 1, Belgium 0. Gonzalo Higuain (Argentina) right footed shot from the centre of the box to the bottom left corner.
45'+2'	HT: Argentina 1-0 Belgium. Fantastic goal by Higuain gives Argentina the slight lead over the red devils.	First Half ends, Argentina 1, Belgium 0.
52'	52m - Belgium's Eden Hazard with the first yellow card of the game	Eden Hazard (Belgium) is shown the yellow card for a bad foul.
75'	Argentina 1 - 0 Belgium Biglia booked a yellow card. Meanwhile, Chadli on for Eden Hazard.	Lucas Biglia (Argentina) is shown the yellow card for a bad foul.
90+5'	Well at least that goal makes them advance to the semi finals. Argentina gets the ticket to advance and Belgium goes home.	Match ends, Argentina 1, Belgium 0.

Summary of the Argentina vs. Belgium match generated automatically using Weight–Core and manually by ESPN

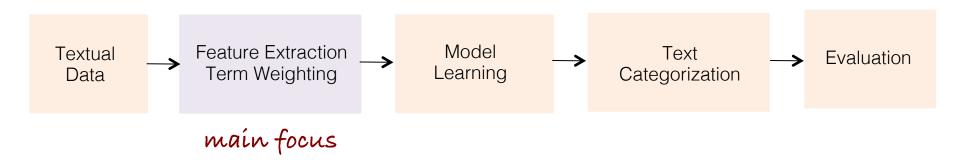
Summary

- Sub-event detection approach based on the k-core decomposition on graph-of-words
- The algorithm exploits the fact that the vocabulary of tweets gets more specific when a sub-event occurs
- The detection mechanism is able to accurately detect important moments as they occur
- The tweets selected by our system give an overview of the event

Tutorial Outline

- Part I. Graph-theoretic concepts and graph-based text representation
- Part II. Information retrieval
- Part III. Keyword extraction and text summarization
- Part IV. Text categorization
- Part V. Final remarks and future research directions

Text Categorization (TC) Pipeline



Applications of TC

- Applications of text classification are numerous:
 - News filtering
 - Document organization
 - Spam detection
 - Opinion mining
- Text documents classification compared to other domains:
 - High number of features
 - Sparse feature vectors
 - Multi-class scenario
 - Skewed class distribution

TC as a graph classification problem

TC as a Graph Classification Problem

- Single-label multi-class text categorization
- Graph-of-words representation of textual documents
- Mining of frequent subgraphs as features for classification
- Main core retention to reduce the graph's sizes
- Long-distance n-grams more discriminative than standard n-grams

Background (1/2)

- Text categorization
 - Standard baseline: unsupervised n-gram feature mining + supervised linear SVM learning
 - Common approach for spam detection: same with Naive Bayes
- n-grams to take into account some word order and some word dependence as opposed to unigrams
- Word inversion? Subset matching?

Background (2/2)

- Graph classification
 - Subgraphs as features
 - Graph kernels [Vishwanathan et al., JMLR '10] [covered wext]
- Frequent subgraph feature mining
 - gSpan [Yan and Han, ICDM '02]
 - FFSM [Huan et al., ICDM '03]
 - Gaston [Nijssen and Kok, Elect. Notes TCS '04]
- Expensive to mine all subgraphs, especially for "large" collections of "large" graphs
- Unsupervised discriminative feature selection?

Subgraph-of-words

- A subgraph of size n corresponds to a long-distance n-gram
 - Takes into account word inversion and subset matching
- For instance, on the R8 dataset, {bank, base, rate} was a discriminative (top 5% SVM features) long-distance 3-gram for the category "interest"
 - "barclays bank cut its base lending rate"
 - "midland bank matches its base rate"
 - "base rate of natwest bank dropped"

Patterns hard to capture with traditional n-gram bag-of-words

Graph of Words Classification

Unsupervised feature mining and support selection

- gSpan mines the most frequent "subgraph-of-words" in the collection of graph-of-words
- Subgraph frequency == long-distance n-gram document frequency
- Minimum document frequency controlled via a support parameter
- The lower the support, the more features but the longer the mining, the feature vector generation and the learning
 - Unsupervised support selection using the elbow method (inspired from selecting the number of clusters in k-means)

Multiclass Scenario

- Text categorization ==
 multiple classes + skewed class distribution + single overall support value (local frequency)
- 100k features for majority classes vs. 100 features for minority ones
- Mining per class with same relative support value

Main Core Mining and n-gram Feature Selection

- Complexity to extract all features!
 - Reduce the size of the graphs
- Maintain word dependence and subset matching ⇒ keep the densest subgraphs
- Retain the main core of each graph-of-words use gSpan to mine frequent subgraphs in main cores
- Extract n-gram features on remaining text (terms in main cores)

Experimental Evaluation

- WebKB: 4 most frequent categories among labeled webpages from various CS departments – split into 2,803 for training and 1,396 for test [Cardoso-Cachopo, '07]
- R8: 8 most frequent categories of Reuters-21578, a set of labeled news articles from the 1987 Reuters newswire – split into 5,485 for training and 2,189 for test [Debole and Sebastiani, '05]
- LingSpam: 2,893 emails classified as spam or legitimate messages

 split into 10 sets for 10-fold cross validation [Androutsopoulos et al.,
 '00]
- Amazon: 8,000 product reviews over four different sub-collections (books, DVDs, electronics and kitchen appliances) classified as posi- tive or negative – split into 1,600 for training and 400 for test each [Blitzer et al., '07]

Models

- 3 baseline models (n-gram features)
 - kNN (k=5)
 - Multinomial Naive Bayes (similar results with Bernoulli)
 - Linear SVM
- 3 proposed approaches
 - gSpan + SVM (long-distance n-gram features)
 - MC + gSpan + SVM (long-distance n-gram features)
 - MC + SVM (n-gram features)

Evaluation Metrics

- Micro-averaged F1-score (accuracy, overall effectiveness)
- Macro-averaged F1-score (weight each class uniformly)
- Statistical significance of improvement in accuracy over the n-gram SVM baseline assessed using the micro sign test (p < 0.05)
- For the Amazon dataset, we report the average of each metric over the four sub-collections

Effectiveness Results (1/2)

Dataset	Web	KB	R8		
Method	Accuracy	F1-score	Accuracy	F1-score	
kNN (k=5)	0.679	0.617	0.894	0.705	
NB (Multinomial)	0.866	0.861	0.934	0.839	
linear SVM	0.889	0.871	0.947	0.858	
gSpan + SVM	0.912*	0.882	0.955*	0.864	
MC + gSpan + SVM	0.901*	0.871	0.949*	0.858	
MC + SVM	0.872	0.863	0.937	0.849	

Table: Test accuracy and macro-average F1-score. Bold font marks the best performance in a column. * indicates statistical significance at p < 0.05 using micro sign test with regards to the SVM baseline of the same column. gSpan mining support values are 1.6% (WebKB) and 7% (R8).

Effectiveness Results (2/2)

Dataset	LingS	Spam	Amazon		
Method	Accuracy	F1-score	Accuracy	F1-score	
kNN (k=5)	0.910	0.774	0.512	0.644	
NB (Multinomial)	0.990	0.971	0.768	0.767	
linear SVM	0.991	0.973	0.792	0.790	
gSpan + SVM	0.991	0.972	0.798*	0.795	
MC + gSpan + SVM	0.990	0.973	0.800*	0.798	
MC + SVM	0.990	0.972	0.786	0.774	

Table: Test accuracy and macro-average F1-score. Bold font marks the best performance in a column. * indicates statistical significance at p < 0.05 using micro sign test with regards to the SVM baseline of the same column. gSpan mining support values are 4% (LingSpam) and 0.5% (Amazon).

Dimension Reduction - Main Core

Dataset	# subgraphs before	# subgraphs after	reduction
WebKB	30,868	10,113	67 %
R8	39,428	11,373	71 %
LingSpam	54,779	15,514	72 %
Amazon	16,415	8,745	47 %

Table: Total number of subgraph features vs. number of subgraph features present only in main cores along with the reduction of the dimension of the feature space on all four datasets.

Unsupervised Support Selection

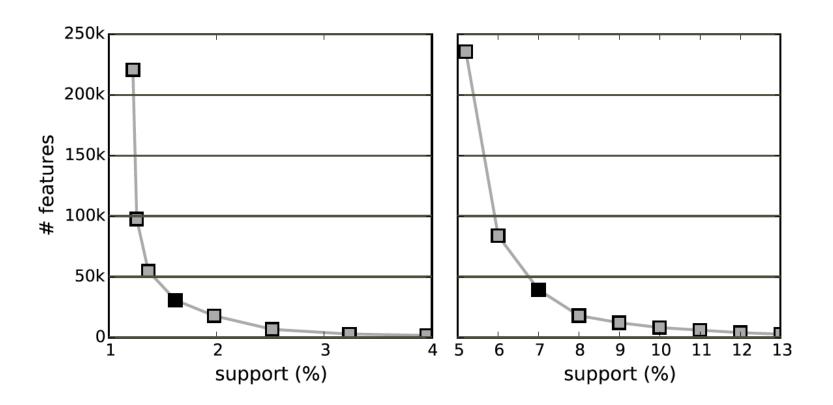


Figure: Number of subgraph features per support (%) on WebKB (left) and R8 (right) datasets. In black, the selected support chosen via the elbow method.

Distribution of Mined n-grams

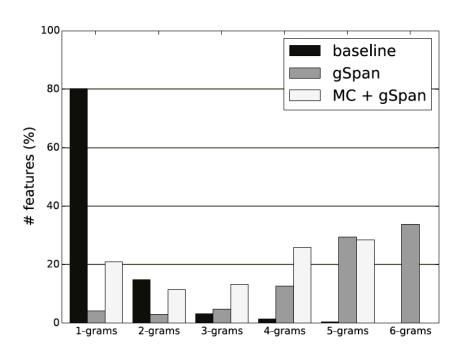


Figure: Distribution of n-grams (standard and long-distance ones) among all the features on WebKB dataset

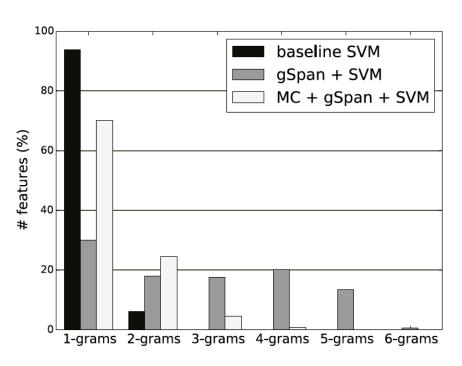


Figure: Distribution of n-grams (standard and long-distance ones) among the top 5% most discriminative features for SVM on WebKB dataset

Summary

- Explored a graph-based approach, to challenge the traditional bag-of-words for text classification
- First trained a classifier using frequent subgraphs as features for increased effectiveness
- Reduced each graph-of-words to its main core before mining the features for increased efficiency
- Reduced the total number of n-gram features considered in the baselines for little to no loss in prediction performances

Regularization for Text Categorization

Regularization for Text Categorization

- Why regularization?
 - Address overfitting: high training score, low test score
 - Better accuracy
- We want our model to generalize in new unseen test instances
- Harvest the full potential hidden in the rich textual data
- Feed meaningful group of words to group lasso for regularization

Objective Function + Loss

Text categorization as a loss minimization problem:

$$oldsymbol{ heta}^* = \operatorname*{argmin}_{oldsymbol{ heta}} \underbrace{\sum_{i=1}^{N} \mathcal{L}(oldsymbol{x}^i, oldsymbol{ heta}, y^i)}_{ ext{empirical risk}}$$

- Logistic regression with binary predictions (y={-1,1}), $h_{\theta,b}(x) = \theta^T x + b$ and $L(x,\theta,y) = e^{-yh(x)}$ (log loss)
- Only minimizing the empirical risk can lead to overfitting.

$$oldsymbol{ heta^*} = rgmin_{oldsymbol{ heta}} \sum_{i=1}^N \mathcal{L}(oldsymbol{x}^i, oldsymbol{ heta}, y^i) + \lambda \Omega(oldsymbol{ heta})$$
 $expected \ risk$
 $expected \ risk$

L1, L2 regularization aka lasso [Tibshirani, '96] and ridge [Hoerl, Kennard, '70]

$$oldsymbol{ heta}^* = rgmin_{oldsymbol{ heta}} \sum_{i=1}^N \mathcal{L}(oldsymbol{x}^i, oldsymbol{ heta}, y^i) + \lambda \sum_{j=1}^p |oldsymbol{ heta}_j| \ oldsymbol{ heta}^* = rgmin_{oldsymbol{ heta}} \sum_{i=1}^N \mathcal{L}(oldsymbol{x}^i, oldsymbol{ heta}, y^i) + \lambda \sum_{j=1}^p oldsymbol{ heta}_j^2$$

Learning

 A constrained optimization problem is formed that can be solved as an augmented Lagrangian problem:

$$egin{aligned} \Omega_{las}(oldsymbol{ heta}) + \Omega_{glas}(\mathbf{v}) + \mathcal{L}(oldsymbol{ heta}) + \mathbf{u}^{ op}(\mathbf{v} - Moldsymbol{ heta}) \ + rac{
ho}{2} \|\mathbf{v} - Moldsymbol{ heta}\|_2^2 \end{aligned}$$

• The problem becomes the iterative update of Θ , \mathbf{v} and \mathbf{u} :

$$egin{align} \min_{oldsymbol{ heta}} \Omega_{las}(oldsymbol{ heta}) + \mathbf{\mathcal{L}}(oldsymbol{ heta}) + \mathbf{u}^{ op} M oldsymbol{ heta} + rac{
ho}{2} \|\mathbf{v} - M oldsymbol{ heta}\|_2^2 \ \min_{\mathbf{v}} \Omega_{glas}(\mathbf{v}) + \mathbf{u}^{ op} \mathbf{v} + rac{
ho}{2} \|\mathbf{v} - M oldsymbol{ heta}\|_2^2 \ \mathbf{u} = \mathbf{u} +
ho(\mathbf{v} - M oldsymbol{ heta}) \end{aligned}$$

 [Yogatama and Smith '14] proved that ADMM for sparse overlapping group lasso converges. A good approximate solution is reached in a few tens of iterations

Structured Regularization

- In L1 and L2 regularization, features are considered as independent
- Group lasso: [Bakin, '99], [Yuan and Lin, '06] introduced group sparsity in the model:

$$\Omega(oldsymbol{ heta}) = \lambda \sum_g \lambda_g \|oldsymbol{ heta}_g\|_2$$

Algorithm 1 ADMM for overlapping group-lasso

Require: augmented Lagrangian variable ρ , regularization strengths λ_{glas} and λ_{las}

1: while update in weights not small do

2:
$$oldsymbol{ heta} = \operatorname*{argmin}_{oldsymbol{ heta}} \Omega_{las}(oldsymbol{ heta}) + \mathcal{L}(oldsymbol{ heta}) + rac{
ho}{2} \sum_{i=1}^{V} N_i (oldsymbol{ heta}_i - \mu_i)^2$$

3: **for** q = 1 to G **do**

4:
$$\mathbf{v}_g = \mathrm{prox}_{\Omega_{glas}, \frac{\lambda_g}{g}}(z_g)$$

5: end for

6:
$$u = u + \rho(\mathbf{v} - M\boldsymbol{\theta})$$

7: end while

Structured Regularization in NLP

Statistical regularizers:

- Sentence regularizer (state-of-the-art) (overlapping)
 - Large numebr of groups but small group sizes.

Semantic regularizers:

- LDA and LSI regularizers
 - groups are considered the LDA/LSI results keep top10 words in each group

Graph-of-words regularizers

- Graph-of-words regularizer: community detection on collection graph
- Word2vec regularizer: k-means clustering in word2vec space (overlapping)

Trying to extract groups of words that talk about similar topics.

Results (1/2)

	dataset	no rea	lasso	ridge	elastic			group las	so	
	uataset	no reg.	14880	Huge	clastic	LDA	<u>LSI</u>	sentence	$\underline{\mathbf{GoW}}$	word2vec
	science	0.946	0.916	0.954	0.954	0.968	0.968*	0.942	0.967^{*}	0.968*
G	sports	0.908	0.907	0.925	0.920	0.959	0.964^{*}	0.966	0.959^{*}	0.946*
20NG	religion	0.894	0.876	0.895	0.890	0.918	0.907^{*}	0.934	0.911^{*}	0.916*
	computer	0.846	0.843	0.869	0.856	0.891	0.885^{*}	0.904	0.885^{*}	0.911*
	vote	0.606	0.643	0.616	0.622	0.658	0.653	0.656	0.640	0.651
l t	movie	0.865	0.860	0.870	0.875	0.900	0.895	0.895	0.895	0.890
me	books	0.750	0.770	0.760	0.780	0.790	0.795	0.785	0.790	0.800
Sentiment	dvd	0.765	0.735	0.770	0.760	0.800	0.805^{*}	0.785	0.795^{*}	0.795*
Se	electr.	0.790	0.800	0.800	0.825	0.800	0.815	0.805	0.820	0.815
	kitch.	0.760	0.800	0.775	0.800	0.845	0.860*	0.855	0.840	0.855*

Table 2: Accuracy results on the test sets. Bold font marks the best performance for a dataset. * indicates statistical significance of improvement over lasso at p < 0.05 using micro sign test for one of our models LSI, GoW and word2vec (underlined).

	datasat	no roc	10000	mi daa	midaa alaatia			group la	sso	
	dataset	no reg.	lasso	ridge	elastic	LDA	<u>LSI</u>	sentence	GoW	word2vec
	science	100	1	100	63	19	20	86	19	21
20NG	sports	100	1	100	5	60	11	6.4	55	44
201	religion	100	1	100	3	94	31	99	10	85
	computer	100	2	100	7	40	35	77	38	18
	vote	100	1	100	8	15	16	13	97	13
l ti	movie	100	1	100	59	72	81	55	90	62
me	books	100	3	100	14	41	74	72	90	99
Sentiment	dvd	100	2	100	28	64	8	8	58	64
Se	electr.	100	4	100	6	10	8	43	8	9
	kitch.	100	5	100	79	73	44	27	75	46

Table 3: Fraction (in %) of non-zero feature weights in each model for each dataset: the smaller, the more compact the model.

Results (2/2)

	dataset	GoW	word2vec
	science	79	691
β	sports	137	630
20NG	religion	35	639
	computer	95	594

	dataset	lasso	ridge	ridge elastic			group la	sso	
	dataset	lasso	Huge	ciastic	LDA	<u>LSI</u>	sentence	<u>GoW</u>	word2vec
	science	10	1.6	1.6	15	11	76	12	19
Ğ	sports	12	3	3	7	20	67	5	9
20NG	religion	12	3	7	10	4	248	6	20
`	computer	7	1.4	0.8	8	6	43	5	10

Table 4: Number of groups.

Table 5: Time (in seconds) for learning with best hyperparameters.

	piscataway combination jil@donuts0.uucp
= 0	jamie reading/seeing chambliss
-0	left-handedness abilities lubin
	acad sci obesity page erythromycin bottom
	and space the launch health for use that
	medical you
	space cancer and nasa
- / 0	hiv health shuttle for tobacco that
$\neq 0$	cancer that research center space
	hiv aids are use theory
	keyboard data telescope available are from
	system information space ftp

Table 6: Examples with LSI regularizer.

= 0	village town edc fashionable trendy trendy fashionable points guard guarding
	crown title champion champions
	numbness tingling dizziness fevers
	laryngitis bronchitis undergo undergoing
$\neq 0$	undergoes undergone healed
	mankind humanity civilization planet
	nasa kunin lang tao kay kong

 Table 7: Examples with word2vec regularizer.

= 0	islands inta spain galapagos canary originated anodise advertises jewelry mercedes benzes diamond trendy octave chanute lillienthal
≠ 0	vibrational broiled relieving succumb spacewalks dna nf-psychiatry itself commented usenet golded insects alternate self-consistent retrospect

Table 8: Examples with graph-of-words regularizer.

Summary

- Find and extract semantic and syntactic structures that lead to sparser feature spaces → faster learning times
- Linguistic prior knowledge in the data can be used to improve categorization performance for baseline bag-of-words models, by mining inherent structures
- No significant change in results with different loss functions as the proposed regularizers are not log loss specific

Interesting questions

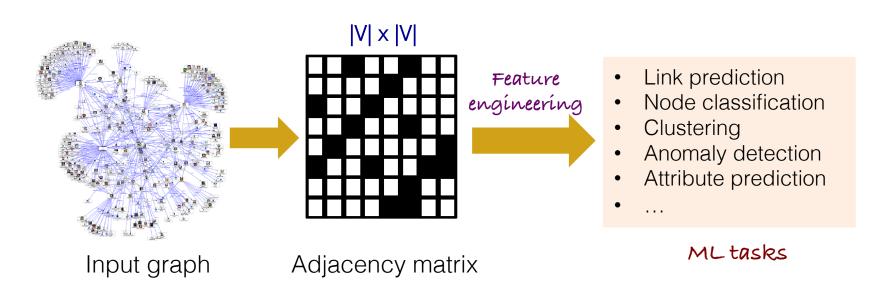
- How can we create and cluster graphs, i.e., covering weighted and/or signed cases?
- Find better clusters in word2vec? (+overlapping with GMM)
- Explore alternative regularization algorithms diverging from group-lasso?

Graph representation learning with applications in NLP

(text categorization and word analogy)

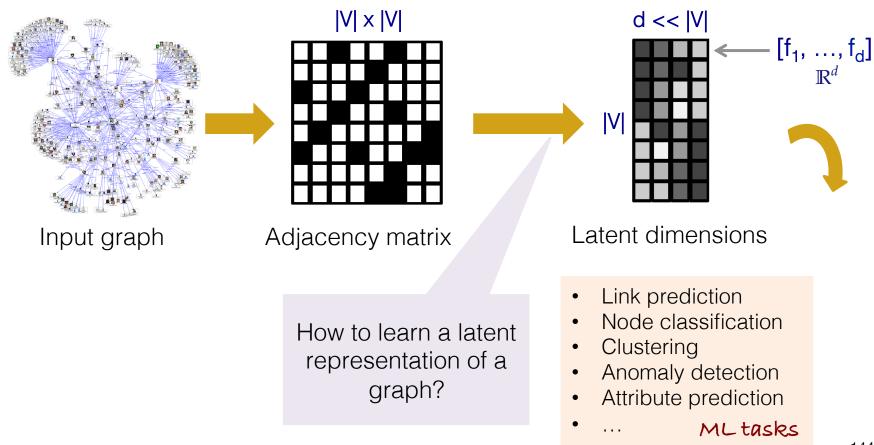
Feature Extraction From Graphs

- The first step of any ML algorithm for graphs is to extract graph features
 - Node features (e.g., degree)
 - Pairs of nodes (e.g., number of common neighbors)
 - Groups of nodes (e.g., community assignments)

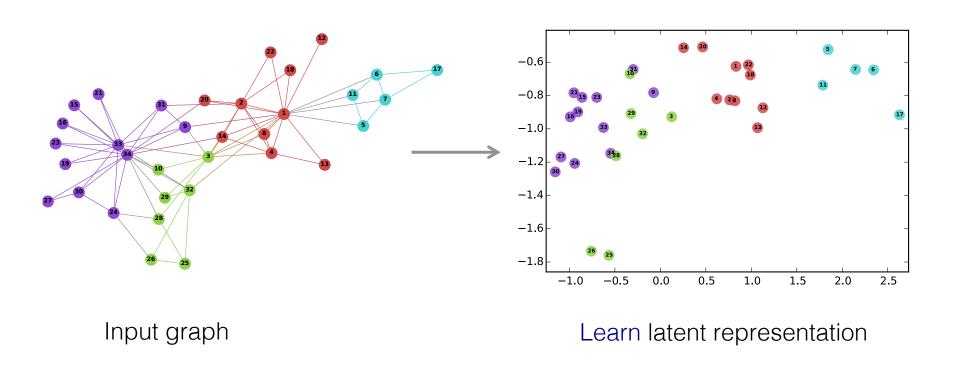


Graph Representation

Create features by transforming the graph into a lower dimensional latent representation



Example: Community Detection



Other applications: classification, link prediction, ...

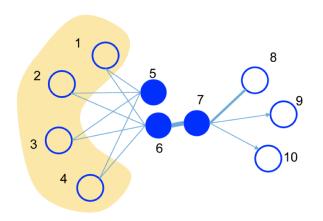
Problem Statement

- How to embed large networks into low-dimensional spaces?
- Requirements
 - Globality/Locality: It is desirable to preserve both local and global network structure when seeking for node representations
 - Scalability: When considering network with millions of nodes and billions of edges: traditional methods (nonlinear dimensionality reduction) suffer from lack of scalability

[Tang et al. '15]

Intuition - Local and Global Structures

- Local structure: observed edges in the network
 - First order proximity
 - Most traditional embedding methods (e.g., Isomap) capture first order proximity
- Global structure: nodes with shared neighbors are likely to be similar (homophily)



- Nodes 6 and 7: first-order proximity
 - Should be represented closely in the embedded space
- Nodes 5 and 6: second-order proximity
 - Same for those nodes

LINE algorithm: Form an objective function that optimizes both local and global network structure

LINE with First-order Proximity (1/2)

Model the probability of an edge (i, j) between v_i and v_i as

Embeddings space

$$p_1(v_i, v_j) = \frac{1}{1 + \exp(-\vec{u}_i^T \cdot \vec{u}_j)}$$

 $\vec{u_i} \in \mathbb{R}^d$ Low dimensional vector representation of node $\mathbf{v_i}$

Joint probability between \mathbf{v}_{i} and \mathbf{v}_{i}

Original (graph) space

$$\hat{p}_1(i,j) = \frac{w_{ij}}{\sum_{(i,j) \in E} w_{ij}}$$

Empirical distribution over the space V×V



Find vectors $\vec{u}_i \in \mathbb{R}^d$ to make those distributions to be as close as possible

LINE with First-order Proximity (2/2)

How to preserve first-order proximity?

$$O_1 = d(\hat{p}_1(\cdot, \cdot), p_1(\cdot, \cdot))$$

Minimize the distance between two distributions

$$KL(P||Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}$$

$$KL-divergence$$

$$O_1 = KL(\hat{p}_1(\cdot, \cdot), p_1(\cdot, \cdot))$$

$$O_1 = -\sum_{(i,j)\in E} w_{ij} \log p_1(v_i, v_j)$$

By finding those $\{\vec{u}_i\}_{i=1..|V|}$ that minimize O_1 , we can represent every node in the **d**-dimensional space

LINE with Second-order Proximity (1/3)

- It assumes that nodes sharing many connections to other nodes are similar to each other
- Each node plays two roles:
 - The node itself
 - A specific "context" of other nodes
- For each node v_i, we model the conditional distribution p₂(•|v_i) over all the "contexts" (all the nodes in the network)
- Assumption of second-order proximity: Nodes with similar distributions p₂(•|v_i) over the "contexts" are similar

LINE with Second-order Proximity (2/3)

For directed edge (i, j), model the probability of context \mathbf{v}_j generated by node \mathbf{v}_i (i.e., probability of an edge from \mathbf{v}_i to \mathbf{v}_i)

Embeddings space

$$p_2(v_j|v_i) = \frac{\exp(\vec{u}_j^{\prime T} \cdot \vec{u}_i)}{\sum_{k=1}^{|V|} \exp(\vec{u}_k^{\prime T} \cdot \vec{u}_i)}$$

 $\vec{u_i} \in \mathbb{R}^d$ Low dimensional vector representation of node $\mathbf{v_i}$

Conditional distribution $p_2(\bullet|v_i)$ over the contexts

Original (graph) space

$$\hat{p}_2(v_j|v_i) = \frac{w_{ij}}{d_i}$$

Out-degree of
$$d_i = \sum_{k \in N(i)} w_{ik}$$

Empirical distribution over the space V×V

Make those distributions to be as close as possible

LINE with Second-order Proximity (3/3)

To preserve second-order proximity, minimize the distance between true and empirical distributions

$$O_2 = \sum_{i \in V} \lambda_i d(\hat{p}_2(\cdot|v_i), p_2(\cdot|v_i))$$

Minimize the distance between two distributions

- λ_i : represents the prestige of node i in the graph
- Set $\lambda_i = d_i$

$$O_2 = -\sum_{(i,j)\in E} w_{ij} \log p_2(v_j|v_i)$$

By finding those $\{\vec{u}_i\}_{i=1..|V|}$ and $\{\vec{u}_i'\}_{i=1..|V|}$ that minimize O_2 , we can represent every node i with **d**-dimensional space \vec{u}_i

Combining Both Models

- Goal: Embed the networks by preserving both the first-order and second-order proximity
 - 1. Train the LINE model for first-order proximity

Train separately

- 2. Train the LINE model for second-order proximity
- Then, concatenate the embeddings trained by the two methods for each node

Experiments - Datasets

Word co-occurrence network

	Language Network	Social Network			
Name	Wikipedia	FLICKR	Youtube		
Type	undirected, weighted	undirected, binary	undirected, binary		
V	1,985,098	1,715,256	1,138,499		
$ \mathrm{E} $	1,000,924,086	22,613,981	2,990,443		
Avg. degree	504.22	26.37	5.25		
#Labels	7	5	47		
#train	70,000	75,958	31,703		

Experiments – Word Analogy

Language network: word analogy

"Paris"

cosine similarity

- Find solution to ("China", "Beijing" → "France, "?")
- Given word embeddings, find word d* whose embedding u_d is closest to vector u_{Beijing} u_{China} + u_{France}

 Proximity in terms of

Algorithm	Semantic (%)	Syntactic (%)	Overall (%)	Running time	
GF	61.38	44.08	51.93	2.96h	
DeepWalk	50.79	37.70	43.65	$16.64\mathrm{h}$	
SkipGram	69.14	57.94	63.02	$2.82\mathrm{h}$	
LINE-SGD(1st)	9.72	7.48	8.50	$3.83\mathrm{h}$	
LINE-SGD(2nd)	20.42	9.56	14.49	3.94h	
LINE(1st)	58.08	49.42	53.35	2.44h	
LINE(2nd)	73.79	59.72	66.10	$2.55\mathrm{h}$	

Line (2nd) outperforms other embedding methods in the word analogy task

Experiments – Document Classification

Metric	Algorithm	10%	20%	30%	40%	50%	60%	70%	80%	90%
Micro-F1	GF	79.63	80.51	80.94	81.18	81.38	81.54	81.63	81.71	81.78
	DeepWalk	78.89	79.92	80.41	80.69	80.92	81.08	81.21	81.35	81.42
	SkipGram	79.84	80.82	81.28	81.57	81.71	81.87	81.98	82.05	82.09
	LINE-SGD(1st)	76.03	77.05	77.57	77.85	78.08	78.25	78.39	78.44	78.49
	LINE-SGD(2nd)	74.68	76.53	77.54	78.18	78.63	78.96	79.19	79.40	79.57
	LINE(1st)	79.67	80.55	80.94	81.24	81.40	81.52	81.61	81.69	81.67
	LINE(2nd)	79.93	80.90	81.31	81.63	81.80	81.91	82.00	82.11	82.17
	LINE(1st+2nd)	81.04**	82.08**	82.58**	82.93**	83.16**	83.37**	83.52**	83.63**	83.74**
Macro-F1	GF	79.49	80.39	80.82	81.08	81.26	81.40	81.52	81.61	81.68
	DeepWalk	78.78	79.78	80.30	80.56	80.82	80.97	81.11	81.24	81.32
	SkipGram	79.74	80.71	81.15	81.46	81.63	81.78	81.88	81.98	82.01
	LINE-SGD(1st)	75.85	76.90	77.40	77.71	77.94	78.12	78.24	78.29	78.36
	LINE-SGD(2nd)	74.70	76.45	77.43	78.09	78.53	78.83	79.08	79.29	79.46
	LINE(1st)	79.54	80.44	80.82	81.13	81.29	81.43	81.51	81.60	81.59
	LINE(2nd)	79.82	80.81	81.22	81.52	81.71	81.82	81.92	82.00	82.07
	LINE(1st+2nd)	80.94**	81.99**	82.49**	82.83**	83.07**	83.29**	83.42**	83.55**	83.66**

- Classification of Wikipedia articles
 - Choose articles from 7 categories
- How to obtain the document vectors for classification?
 - Average of the corresponding word vector representations

Tutorial Outline

- Part I. Graph-theoretic concepts and graph-based text representation
- Part II. Information retrieval
- Part III. Keyword extraction and text summarization
- Part IV. Text categorization
- Part V. Final remarks and future research directions

Summary

- Graphs have been widely used as modeling tools in
 - NLP
 - Text Mining
 - Information Retrieval
- Goal of the tutorial
 - Presentation of recent methods that rely on graph-based text representations to deal with various tasks in NLP and IR
 - Focus on the graph-of-words model
 - Borrow ideas from the graph mining and network analysis field

Thank You! - Questions?

Fragkiskos D. Malliaros
 University of California San Diego fmalliaros@ucsd.edu
 http://fragkiskos.me

Michalis Vazirgiannis
 École Polytechnique, France
 mvazirg@lix.polytechnique.fr
 http://www.lix.polytechnique.fr/~mvazirg

Tutorial material: http://fragkiskosm.github.io/projects/graph_text_tutorial

References (1/4)

- Boudin, F., and Morin, E. 2013. Keyphrase Extraction for N-best reranking in multi-sentence compression. In North American Chapter of the Association for Computational Linguistics (NAACL).
- Mehdad, Y., Carenini, G., Tompa, F. W., and Ng, R. T. 2013. Abstractive meeting summarization with entailment and fusion. In Proc. of the 14th European Workshop on Natural Language Generation (pp. 136-146).
- Manu Aery and Sharma Chakravarthy. 2005. Infosift: Adapting graph mining techniques for text classification. In FLAIRS, pages 277–282.
- Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto.1999. Modern Information Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
- Roi Blanco and Christina Lioma. 2012. Graph-based term weighting for information retrieval. Inf. Retr., 15(1):54–92.
- Florian Boudin. 2013. A comparison of centrality measures for graph-based keyphrase extraction (ijcnlp '13). In Sixth International Joint Conference on Natural Language Processing, pages 834–838.
- Adrien Bougouin, Florian Boudin, and B´eatrice Daille. 2013. Topicrank: Graph-based topic ranking for keyphrase extraction. In Sixth International Joint Conference on Natural Language Processing (IJCNLP '13), pages 543–551.
- Adrien Bougouin, Florian Boudin, and B'eatrice Daille. 2016. Keyphrase annotation with graph co-ranking. In 26th International Conference on Computational Linguistics (COLING '16).
- Gunes Erkan and Dragomir R Radev. 2004. Lexrank: Graph-based lexical centrality as salience in text summarization. Journal of Artificial Intelligence Research, pages 457–479.
- Filippova, K. 2010. Multi-sentence compression: Finding shortest paths in word graphs. In Proceedings of the 23rd International Conference on Computational Linguistics (pp. 322-330). Association for Computational Linguistics.

References (2/4)

- Maria Grineva, Maxim Grinev, and Dmitry Lizorkin. 2009. Extracting key terms from noisy and multitheme documents. In Proceedings of the 18th International Conference on World Wide Web (WWW '09), pages 661– 670. ACM.
- Samer Hassan, Rada Mihalcea, and Carmen Banea. 2007. Random-walk term weighting for improved text classification. In ICSC, pages 242–249.
- Chuntao Jiang, Frans Coenen, Robert Sanderson, and Michele Zito. 2010. Text classification using graph mining-based feature extraction. Knowl.- Based Syst., 23(4):302–308.
- Marina Litvak and Mark Last. 2008. Graphbased keyword extraction for single-document summarization. In Proceedings of the Workshop on Multi-source Multilingual Information Extraction and Summarization (MMIES '08), pages 17–24. Association for Computational Linguistics.
- Marina Litvak, Mark Last, Hen Aizenman, Inbal Gobits, and Abraham Kandel. 2011. Degext a language-independent graph-based keyphrase extractor. In Elena Mugellini, Piotr S. Szczepaniak, Maria Chiara Pettenati, and Maria Sokhn, editors, Proceedings of the 7th Atlantic Web Intelligence Conference (AWIC '08), pages 121–130.
- Fragkiskos D. Malliaros and Konstantinos Skianis. 2015. Graph-based term weighting for text categorization. In ASONAM, pages 1473–1479. ACM.
- Alex Markov, Mark Last, and Abraham Kandel. 2007. Fast categorization of web documents represented by graphs. In Advances in Web Mining and Web Usage Analysis, volume 4811, pages 56–71.
- Polykarpos Meladianos, Giannis Nikolentzos, Francjois Rousseau, Yannis Stavrakas, and Michalis Vazirgiannis.
 2015. Degeneracy-based real-time subevent detection in twitter stream. In Ninth International AAAI Conference on Web and Social Media (ICWSM '15).

References (3/4)

- Rada Mihalcea and Paul Tarau. 2004. TextRank: bringing order into texts. In Proceedings of the 2004
 Conference on Empirical Methods in Natural Language Processing (EMNLP '04). Association for Computational
 Linguistics.
- Francois Rousseau and Michalis Vazirgiannis. 2013. Graph-of-word and tw-idf: new approach to ad hoc ir. In Proceedings of the 22nd ACM international conference on Conference on Information & Knowledge Management (CIKM '13), pages 59–68. ACM.
- Francois Rousseau and Michalis Vazirgiannis. 2015. Main core retention on graph-of-words for singledocument keyword extraction. In European Conference on Information Retrieval (ECIR '15), pages 382–393. Springer.
- Francois Rousseau, Emmanouil Kiagias, and Michalis Vazirgiannis. 2015. Text categorization as a graph classification problem. In ACL (1), pages 1702–1712. The Association for Computer Linguistics.
- Francois Rousseau. 2015. Graph-of-words: mining and retrieving text with networks of features. Ph.D. thesis, Ecole Polytechnique.
- Stephen B. Seidman. 1983. Network Structure and Minimum Degree. Social Networks, 5:269–287.
- Konstantinos Skianis, Francois Rousseau, and Michalis Vazirgiannis. 2016. Regularizing text categorization with clusters of words. In EMNLP, pages 1827–1837. The Association for Computational Linguistics.
- Shashank Srivastava, Dirk Hovy, and Eduard H. Hovy. 2013. A walk-based semantically enriched tree kernel over distributed word representations. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing (EMNLP '13), pages 1411–1416.
- Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, Qiaozhu Mei. 2015. LINE: Large-scale Information Network Embedding. In Proceedings of the 24th International Conference on World Wide Web (WWW '15), pages 1067-1077

References (4/4)

- Antoine J.-P. Tixier, Fragkiskos D. Malliaros, and Michalis Vazirgiannis. 2016a. A graph degeneracybased approach to keyword extraction. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP '16), pages 1860–1870. The Association for Computational Linguistics.
- Antoine J.-P. Tixier, Konstantinos Skianis, and Michalis Vazirgiannis. 2016b. Gowvis: a web application for graph-of-words-based text visualization and summarization. In ACL. The Association for Computational Linguistics.
- S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and Karsten M. Borgwardt. 2010. Graph kernels. J. Mach. Learn. Res., 11:1201–1242.
- Jia Wang and James Cheng. 2012. Truss decomposition in massive networks. Proc. VLDB Endow., 5(9):812–823.
- Wei Wang, DiepBich Do, and Xuemin Lin. 2005. Term graph model for text classification. In Advanced Data Mining and Applications, volume 3584, pages 19–30.
- Rui Wang, Wei Liu, and Chris McDonald. 2015. Corpus-independent generic keyphrase extraction using word embedding vectors. In Workshop on Deep Learning for Web Search and Data Mining (DL-WSDM '15).
- Xifeng Yan and Jiawei Han. 2002. gSpan: Graphbased substructure pattern mining. In Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM '02).