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Introduction Proposed Metric: Generalized Robustness Index ri Robustness of Large Static Graphs: High Robustness Pattern

= Given a large social graph, like a scientific collaboration network, what can we say about its Q: Can we efficiently approximate the SC of every node in the graph? Q: What can we say about the robustness of large social graphs?
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0 Summarizes the robustness of a graph in a single number (smaller r, — better robustness)
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Preliminaries: Expansion Properties
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An lllustrative Example: Random vs. Real Graphs
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= A graph is considered to have good expansion properties if every subset of nodes has good
expansion (i.e., many neighbors)
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(b) Discrepancy plot
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- However, it is not clear how large the spectral gap should be

the r¢ index aligns with the diameter’s spike s :

Anomaly Detection

Effectiveness and Scalability of r, index

Spectral Gap + Subgraph Centrality

Q: How effective and scalable (efficient) is the proposed ri index? Q: Can we spot anomalies over time using the ry index?
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Figure: Fragility evolution of the DBLP graph

= Shortcoming: | | | (lin-log scales)
Shortcoming = The ry index scales linearly with respect to the number of edges
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