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Abstract. Social network analysis has become an extremely popular
research area, where the main focus is the understanding of networks’
structure. In this paper, we study the expansibility of large social graphs,
a structural property based on the notion of expander graphs (i.e. sparse
graphs with strong connectivity properties). It is widely believed that
social networks have poor expansion properties, due to their community-
based organization. Moreover, this was experimentally confirmed on small
scale networks and it is considered as a global property of social networks
(independent of the graph’s size) in many applications. What really hap-
pens in large scale social graphs? To address this question, we measure
the expansion properties of several large scale social graphs using the
measure of subgraph centrality. Our findings show a clear difference on
the expansibility between small and large scale social networks, and thus
structural differences. Our observations could be utilized in a range of
applications which are based on social graphs’ structure.

Keywords: Social networks, Expansion, Measurement, Graph Mining

1 Introduction

Recently, there has been a lot of interest in the study of complex network struc-
tures arising in many diverse settings. Characteristic examples are networks from
the domain of sociology (e.g. social networks), technological and information net-
works (e.g. the Internet, the Web, e-mail exchange networks, social interaction
networks over social media applications), biological networks (e.g. protein in-
teractions), collaboration and citation networks (e.g. co-authorship networks),
and many more [20]. The research interest has mainly focused on understanding
the structure, the organization, and the evolution of these networks, and many
interesting results have been produced [2].

A better and deeper understanding of network’s structure could have mul-
tiple benefits in several domains (e.g. better design for graph algorithms and
applications). Towards this direction, in this work we study the expansibility of
large social graphs, a structural property based on concepts from the theory
of expander graphs [10]. Our main goal is to explore the expansion properties



Table 1. Symbols and definitions.

Symbol Definition

G Graph representation of datasets
V, E Set of nodes and edges for graph G
|V |, |E| Number of nodes and edges
N(S) Neighborhood nodes of node set S
h(G) Expansion factor of graph G

(or isoperimetric number or Cheeger constant)
A Adjacency matrix of a graph
aij Entry in matrix A
λi i-th largest eigenvalue
uij i-th component of j-th eigenvector
SC(i) Subgraph centrality of node i

of large scale social networks and compare it with known results from previ-
ous studies on small graphs, in order to extract useful conclusions about social
networks’ structure. Table 1 gives a list of used symbols with their definitions.

Expansion and Expander Graphs

Informally, a graph is a good expander if it is simultaneously sparse and highly
connected. More precicely, given a graph G = (V,E), the expansion of any

subset of nodes S ⊂ V with size at most |V |2 , is defined as the number of its
neighborhood nodes (i.e. those nodes who have one endpoint inside S and the
other outside) over the size of the subset S. That is, if N(S) are the neighborhood

nodes of S, the expansion factor of the set S is |N(S)|
|S| . A graph is considered

to have good expansion properties if every such subset of nodes has expansion

at least h(G), i.e. h(G) ≥ |N(S)|
|S| ,∀S ⊂ V and |S| < |V |

2 . In other words, the

expansion factor of a graph is defined as the minimum expansion over all subsets
[10]:

h(G) = min{
S:|S|≤ |N|

2

} |N(S)|
|S|

. (1)

Expansion properties can offer crucial insights into the structure of a graph,
and in particular they can inform us about the presence or not of edges which
can act as bottlenecks inside the network. This practicaly means that measuring
the expansibility of a graph we are able to know to what extent the graph
has a modular structure or not. Large expansion factor implies good expansion
properties, which means that any subset of nodes will have a relatively large
number of edges with one endpoint in this set, and thus poor modularity. In
other words, if we think these subsets as cuts of a graph, good expansibility
require cuts with large size (i.e. large number of edges crossing the cut). On the
other hand, bad expansibility is the opposite behavior. For any subset of nodes



it is impossible to satisfy the constraint for a large neighborhood. Hence, such
kind of graphs can be easily separated into disconnected subgraphs with the
elimination of a small number of edges. It is clear that using notions from the
field of sociology and social networks, graphs with poor expansibility correspond
to graphs with good community structure.

Contributions and Summary of our Results

In this paper we measure the expansibility of several large social graphs. Based on
the above discussion, we expect that social networks will exhibit bad expansion
properties, because of the fact that they are organized in communities, i.e. groups
of nodes with high density of edges within them, and much lower density between
different groups [21]. This structural property was confirmed experimentally from
previous studies [7] on small social networks, and in several cases is considered
as a global property of social networks, independent of the graph size (e.g., some
generative models for social networks are trying to generate synthetic social
graphs satisfying this bad expansion property). However, does the same result
apply to large scale social networks? In other words, how different is the structure
of social graphs with a large number of nodes and edges, if any, from that of
small graphs?

This is the main question we are trying to answer in this work. We measure
the expansion properties of several social graphs with a large number of nodes
and edges. In order to do this, we consider the fact that graphs with good expan-
sion properties exhibit large spectral gap between the two largest eigenvalues of
the adjacency matrix [10]. Then, utilizing this property together with the mea-
sure of subgraph centralilty [6], [7], we characterize the expansibility of these
social graphs. Our findings suggest that large scale social networks, in contrast
to small ones, show good expansibility. This point is particularly significant since
it can help us towards a better understanding of large social networks’ struc-
ture. Furthermore, these observations can be exploited in several domains such
as structure-based classification schemes for networks, searching in networks [16]
and in applications which may require robustness of the social network over so-
cial media applications.

2 Related Work

In this section we review the related work, which can be placed into three main
categories: graph structure, applications and spectral graph analysis.

Graph Structure. There is a vast literature on methods for understanding
the structure of social networks [21], [11], [18], [15] and generally of complex
networks [20]. The key step for these methods is finding properties and laws
which the graphs obey. Studying static snapsots of graphs has led to the dis-
covery of interesting properties such as the power law degree distribution [9],
the small diameter [1] and the triangle power law [25]. Futhermore, Leskovec



et al. [13], [14] showed that time-evolving graphs have diameter which shrinks
and stabilizes over time and obey the densification power law. For a nice survey
one can consult the recent work of Chakrabarti, Faloutsos, and McGlohon [2].
Estrada [7] studied expansion properties of complex networks and showed that
social graphs exhibit poor expansibility. However, in contrast with our work, it
focuses on small scale networks. On the other hand, we explore large scale social
networks and our results suggest a clear difference between their structure (in
terms of expansibility) with that of small social graphs.

Applications. The understanding of a network’s structure can be exploited in
several domains and applications. Generating realistic graphs [2] is such an appli-
cation, where generators should satisfy the observed properties. Other domains
are searching in networks [16], sampling [17] and rumor spreading [4].

Spectral Graph Analysis. Analyzing graphs using spectral techniques (i.e.
the eigenvalues and eigenvectors of a matrix representation of the graph (mainly
adjacency and Laplacian matrices)) has a long history [3]. More recent related
works include spectral algorithms for community detection [23] and spectral
counting of triangles in large graphs [25]. As we will see next in this paper,
the measure which is used for characterizing the expansibility of social graphs
(subgraph centrality) can be computed using the spectrum of the adjacency
matrix of the graph.

3 Measuring Expansion Properties

In this section we present the method we used for measuring the expansion
properties of social networks, to characterize them as networks with “good” or
“bad” expansibility. As we state previously, in order to compute the expansion
factor of a graph (which fully characterizes its expansion properties), we need
to compute the minimum fraction of neighborhood nodes, over the nodes inside

the subset, for all possible subsets of nodes with size at most |V |2 . Since this is an
NP-hard problem [19], and thus intractable to compute, we need approximation
techiniques for the expansion factor of a graph.

Thanks to a very well known result in the field of spectral graph theory,
the expansion factor can be approximated using the spectrum of the adjacency
matrix A of the graph, and more precicely the difference between the largest and
second largest eigenvalues of A. This difference ∆λ = λ1 − λ2 is known as the
spectral gap of matrix A and it is related to the expansion factor h(G) through
the Alon - Milman inequality3,

∆λ

2
≤ h(G) ≤

√
2λ1∆λ. (2)

3 This is also known as Cheeger inequality.



Large spectral gap implies big expansion factor and thus a graph with good
expansion properties. On the other hand, if λ2 is close enough to λ1, the spectral
gap will be small and the graph will show poor expansibility.

The above discussion suggests a simple way for characterizing the expansion
properties of a graph: compute the spectral gap and if this is large, the graph
should have good expansion properties. However, a crucial question in the above
claim is how large the spectral gap should be for a graph to have good expan-
sibility. As we will see from the experimental study in real-world networks, it is
very difficult to measure the quantity of interest solely from the spectral gap of
the adjacency matrix.

In this paper we measure the expansibility of a graph using the notion of
subgraph centrality [6], employing a solution proposed by Estrada [7]. The reason
for this decision is twofold: first of all, as we will see in the rest of this paper, the
method based on subgraph centrality provides a clear distinction between graphs
with different expansion properties. The second reason is that using this method,
we can easily compare our results with that of [7], trying to find differences
between the structure of large and small scale social graphs.

3.1 Subgraph Centrality

In this section we present the subgraph centrality measure [6] which is the basis
for the estimation of the expansion character of a graph. Like other centrality
measures in the field of graph theory and network analysis (e.g., degree central-
ity, betweenness centrality), subgraph centrality determines the importance of a
node in the graph taking into consideration all the subgraphs in which the node
participates.

More precicely, the subgraph centrality SC(i) of a node i ∈ N is calculated
based on the total number of closed walks in a graph. A closed walk of specific
length ` is an alternating sequence of nodes and edges starting and ending with
a node, v1, e1, v2, e2, . . . , e`−1, v`, where ei = (vi, vi+1) ∈ E,∀i = 1, . . . , ` − 1
and v1 = v`. For instance, a closed walk of length three represents a triangle.
The subgraph centrality of a node i is defined as the sum of closed walks with
different lengths, starting and ending at node i. However, all these walks with
different lengths do not contribute equally to the centrality of the node; shorter
walks contribute more (this happens because of the fact that in real-world graphs
small subgraphs tend to be more interesting (e.g., triangles)). Thus, the subgraph
centrality of node i is given by

SC(i) =

∞∑
`=0

A`
ii

`!
, (3)

where the diagonal entry αii of the matrix A` contains the number of walks of
length ` that begin and end at the same node i. Using techniques from spectral
graph theory, it can be proved that the subgraph centrality can be obtained
from the spectrum of the adjacency matrix A of the graph. Because of the fact
that (3) counts both even and odd length closed walks and more precicely even



length walks may be trivial (moving forth and back in the graph), we keep only
odd length walks4 [6]:

SC(i) =

N∑
j=1

u2ij sinh(λj). (4)

Now we can write (4) in the form

SC(i) = u2i1 sinh(λ1) +

N∑
j=2

u2ij sinh(λj), (5)

where ui1 is the i-th component of the principal eigenvector (eigenvector corre-
sponding to the largest eigenvalue λ1). If the graph has good expansion prop-

erties, which means that λ1 � λ2, then u2i1 sinh(λ1) �
∑N

j=2 u
2
ij sinh(λj) and

relation (5) could be written as

SC(i) ≈ u2i1 sinh(λ1). (6)

This means that the principal eigenvector ui1 is related to SC(i) as

ui1 ∝ sinh−1/2(λ1) SC(i)1/2. (7)

This relation suggests that if the graph has good expansion properties (big
spectral gap), ui1 will be proportional to SC(i) and a log-log plot of ui1 vs.
SC(i), ∀i ∈ N will show a linear fit with slope 1/2 [7]. Thus, good expansion
implies a power-law relationship between the principal eigenvector and the sub-
graph centrality. On the other hand, graphs with poor expansibility will deviate
from this property. Moreover, this behavior can be summarized in the quantity
ξ(G), which captures exactly the expansion character of a graph [8]:

ξ(G) =

√√√√ 1

|N |

|N |∑
i=1

{
log(ui1)−

(
logA+

1

2
log(SC(i))

)}2

, (8)

where A = sinh−1/2(λ1). This quantity measures the deviation from the “per-
fect” linear correlation (in log scale), which occurs when the spectral gap λ1−λ2
is large (and thus the graph has good expansion properties). This is exactly what
we propose to use in this paper for measuring the expansion properties of real-
world social graphs.

For a better understanding and illustration, we apply this method to two
graphs with known expansion properties. The first one is a random graph with
50 nodes produced by the Erdös-Rényi (ER) random graph model [5] with prob-
ability p = 0.3 (Fig. 1 (a)) and the second one is Newman’s collaboration net-
work between 379 researchers in the area of network science (Fig. 1 (c)) [22].

4 The graphs used in this study are non-bipartite and thus the number of closed walks
of odd length is different from zero.
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Fig. 1. Two graphs with known expansion properties and the plots of the principal
eigenvector vs. subgraph centrality in log-log scale.

Random graphs are known to have good expansibility [10], and thus we expect
linear correlation in log-log scales between the principal eigenvector and sub-
graph centrality. On the other hand, Newman’s collaboration network has bad
expansion character because of the fact that nodes form dense modules, with
sparse connections between different modules. Hence, we expect deviation from
this “perfect” linear correlation. Figure 1 (b) and (d) depicts these results. Also,
we can observe that ξ(G) is much smaller for the ER graph compared with the
second one, which agrees with the above discussion.

4 Experimental Results

Equipped with the tools presented in Section 3, we measure the expansion prop-
erties of different real-world social graphs shown in Table 2. All these graphs
represent social networks with a large number of nodes and edges. The selection
of these datasets, except from their large scale, is based on the fact that they
were formed under different “rules” and conditions. On the one hand we have
networks where edge creation is based on mutual knowledge between individuals
(e.g., co-authorship networks). On the other hand, there is a set of social net-
works, some of which are formed over social media applications, that may not
require mutual knowledge (and sometimes confirmation from the other side) for



Table 2. Summary of real-world networks used in this study.

Network Nodes Edges Description

Epinions [24] 75, 877 405, 739 Who trusts whom network
Email-EUAll [14] 224, 832 340, 795 Email network
Slashdot [15] 77, 360 546, 487 Slashdot social network (Nov. ’08)
Wiki-Vote [12] 7, 066 100, 736 Wikipedia who-votes-on-whom network
Facebook [26] 63, 392 816, 886 Facebook New Orleans social network
Youtube [18] 1, 134, 890 2, 987, 624 Social network from Youtube site
CA-astro-ph [14] 17, 903 197, 031 Co-authorship network in Astro Physics
CA-gr-qc [14] 4, 158 13, 428 Co-author. network in General Relativity
CA-hep-th [14] 8, 638 24, 827 Co-author. network in High Energy Phys.

the interaction (e.g. Youtube). In all cases, we consider the graphs as unweighted
and undirected. Moreover, we extract the largest connected component and use
it as a good representative of the whole graph (this is a standard approach in
such kind of studies).

Figure 2 presents plots of the expansion character of the graphs we exam-
ined, together with the values ξ(G). From a first look, it is clear that almost all
social graphs (except the last two which we will discuss later) exhibit good ex-
pansion properties, showing linear correlation between the principal eigenvector
and subgraph centrality in log-log scales. In all plots we have included a red line
which represents this ideal behavior in case of graphs with big spectral gap and
therefore good expansibility.

The results suggest that social graphs depicted in Fig. 2 (a)-(g), expand
very well allowing the selection of arbitrary subsets of nodes with size at most
|V |
2 , such that for every set there is a relatively large number of edges with one

endpoint inside the set and the other outside (in other words, every selection
of such a subset creates a cut in the graph with a relative large size). Thus,
a first conclusion is that these social graphs lack of edges which can act as
bottlenecks. Furthermore, this result implies that the nodes inside the networks
we examined are not organized based on a clear modular architecture. More
precicely, a basic characteristic of the networks’ structure is the absence of well
defined clusters which can be easily seperated from the whole graph. In other
words, the networks lack of clusters (communites) with a clear difference between
the number of intra-cluster edges and inter-cluster edges5.

However, in what degree are the above observations expected? Before trying
to answer this question we must repeat that the used datasets correspond to
social networks and on-line social networks from social media applications, with
a large number of nodes and edges. It is known that the organization of social
networks is based on communities (i.e. subgraphs with high intra-community

5 We must note here that our findings do not imply the absence of communities from
social graphs, but the subgraphs which may correspond to communities cannot be
easily isolated, since they have a relatively large number of extra-community con-
nections.



(a) Epinions (b) Email-EuAll (c) Slashdot

(d) Wiki-Vote (e) Facebook (f) Youtube

(g) CA-astro-ph (h) CA-gr-qc (i) CA-hep-th

Fig. 2. Expansion properties of large social networks presented in Table 2. All plots
depict the principal eigenvector vs. the subgraph centrality in log-log scale, and the
ξ(G) value for each graph.



and low inter-community edges). As a result, we expect that social networks
will have poor expansion character because of the presence of communities. This
means that it is very difficult for all the subsets of nodes to satisfy the constraint
for good expansibility. In [7], the author measured the expansibility of a large
number of real-world social networks, and showed that almost all of them have
bad expansion properties, which is intuitively expected from the above discus-
sion. However, it is very important to note that the social graphs studied in [7],
have a small number of nodes and edges. Moreover, none of them has arisen from
social media applications and generally online social networking, but almost all
formed by physical interaction between people.

On the other hand, as our results suggest, the expansion character of large
scale social graphs is completely different from that of small scale networks.
Almost all studied social networks exhibit good expansibility, which we consider
that is mainly due to two reasons. The first one, and the most obvious, is the
scale of the network. It seems that, in large scale social graphs it is difficult to
find subsets of nodes which can be easily isolated. For example, consider the co-
authorship networks CA-astro-ph, CA-gr-qc and CA-hep-th. While these
networks are formed in a similar way (collaboration between scientists), the first
one has about 18K nodes and 200K edges, while the other two have much smaller
order (number of nodes) and size (number of edges) (4K nodes, 13K edges and
8K nodes, 25K edges respectively). Figures 2 (g), (h) and (i) show the expansion
properties of these graphs. We can observe their different behavior, where the
larger one shows good expansibility with a very small ξ(G) value (1.35× 10−8),
while the other two do not show this property (ξ(G) = 0.53021 and ξ(G) = 1.007
respectively).

The second reason we consider for justifying these findings is that most of
these networks are created over social networking and social media applications.
Thus, because of the fact that the interaction may not require knowledge from
both parts, it is easier to be achieved. Of course, something like that is very
difficult to happen in social networks which require knowledge of the other part
for an interaction.

Application Example. How these findings could be utilized in a real appli-
cation, such as decentralized search in complex networks? This is a common
problem in many applications, where starting from one initial node, we must
locate a target node inside the network, without full knowledge of the global
network structure (topology). Since the computation of the shortest path to the
target node is unable, a strategy is to visit nodes using only local information, in
such a way that every subset of visiting nodes has a large neighborhood and thus
good expansibility (the goal is to reach the target node, minimizing the num-
ber of required steps). Since our findings suggest that large scale social graphs
exhibit good expansion properties, the networks tend to be more searchable,
making the above searching strategy more efficient.



Computational Issues. While subgraph centrality (4) provides a powerfull
tool for measuring the expansion properties of a graph, it requires the compu-
tation of all eigenvalue - eigenvector pairs (λi,ui), ∀i ∈ N , of the adjacency
matrix A. While this may not be a problem for small graphs, it becomes a com-
putational bottleneck for large scale networks. In order to overcome this, we use
the observation of [25], which states that the eigenvalues of real-world graphs
are almost symmetric around zero, meaning that their signs tend to alternate.
Moreover, because of the fact that the sinh(·) function keeps the sign of the
eigenvalues, we can use only the top strongest eigenvalues and their correspond-
ing eigenvectors to achieve an excellent approximation of the subgraph centrality
(in our experiments we keep the first 30 strongest pairs).

5 Conclusions

In this paper we measured the expansion properties of several large scale so-
cial graphs, using the measure of subgraph centrality. Our findings show that,
in contrast to small social networks, large scale social graphs generally exhibit
good expansibility. This is something that has not appreciated previously, and
in many cases social graphs were characterized as graphs with poor expansion
properties, indepedent of their size. Our observations, except for a better un-
derstanding of social networks’ structure, could be possibly utilized in several
domains and applications such as searching in networks, community discovery
and more generally in applications over social networks where the robustness of
the underlying structure is a crucial factor. In future work, we plan to further
investigate and understand the underlying mechanisms which cause this behav-
ior and how these findings could affect applications which consider the structure
of social networks.
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