
To Stay or Not to Stay:
Modeling Engagement Dynamics in Social Graphs

Fragkiskos D. Malliaros1, Michalis Vazirgiannis1,2

1 Computer Science Laboratory, École Polytechnique, France
2 Department of Informatics, Athens University of Economics and Business, Greece

{fmalliaros, mvazirg}@lix.polytechnique.fr

ABSTRACT
Given a large social graph, how can we model the engagement
properties of nodes? Can we quantify engagement both at node
level as well as at graph level? Typically, engagement refers to the
degree that an individual participates (or is encouraged to partici-
pate) in a community and is closely related to the important prop-
erty of nodes’ departure dynamics, i.e., the tendency of individuals
to leave the community. In this paper, we build upon recent work in
the field of game theory, where the behavior of individuals (nodes)
is modeled by a technology adoption game. That is, the decision of
a node to remain engaged in the graph is affected by the decision of
its neighbors, and the “best practice” for each individual is captured
by its core number – as arises from the k-core decomposition. After
modeling and defining the engagement dynamics at node and graph
level, we examine whether they depend on structural and topolog-
ical features of the graph. We perform experiments on a multitude
of real graphs, observing interesting connections with other graph
characteristics, as well as a clear deviation from the corresponding
behavior of random graphs. Furthermore, similar to the well known
results about the robustness of real graphs under random and tar-
geted node removals, we discuss the implications of our findings
on a special case of robustness – regarding random and targeted
node departures based on their engagement level.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Applications—Data min-
ing

General Terms
Theory, Experimentation, Measurement
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1. INTRODUCTION
Over the last years, there is a considerable interest on study-

ing the properties and dynamics of social networks, arising from a
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plethora of online social networking and social media applications,
such as FACEBOOK, GOOGLE+ and YOUTUBE. Typically, users
become members of an online community for several reasons (e.g.,
create new friendship relationships, use of applications offered by
a platform, etc.) and a lot of research effort has been devoted to
understand the dynamics of formation and evolution of those social
communities. Characteristic example is the observation that indi-
viduals decide to join a community based not only on the number
of friends that are already part of the community, but also on the
degree of interactions among these friends [5].

However, similar to the decision of becoming member of a com-
munity, an individual may also decide to leave the network. Al-
though in many of the popular social networking applications typ-
ically users do not explicitly leave the network, the decision of de-
parture can be expressed by inactivity, i.e., the user do not partici-
pate in the activities of the community. Can we model and quantify
the departure dynamics of individuals in a social graph?

In this paper, we are trying to answer the above question studying
the property of user engagement in social interaction graphs. Typ-
ically, user engagement refers to the extend that an individual is
encouraged to participate in the activities of a community1. In the
areas of sociology and economics, the problem of social engage-
ment examines the engagement of individuals to products, services
or ideas. Similarly, in the field of web mining, the property of en-
gagement refers to the quality of the user experience, as expressed
by the duration and frequency that a web application is used [6]. In
the context of a social graph, the property of engagement captures
the incentive of a user (node) to remain engaged. In other words,
the property of node engagement can be considered as complemen-
tary to the one of node departure.

Typically, an individual decides to remain engaged in the com-
munity (instead of depart), based on the benefit that is derived by
the participation. Intuitively, the benefit of a user is based on its
neighborhood, i.e., the number of friends that are also part of the
community. Furthermore, as mentioned earlier, the strength of in-
teractions among the friends of a user, is also a crucial factor for
being part of the community. Therefore, it becomes clear that the
decision of a user to remain engaged is affected by the structure of
its neighborhood. Suppose now that a user decides to dropout, due
to its low incentive of being part of the community. This decision
is possible to affect the engagement level of his neighbors, that po-
tentially can depart as well. This effect can evolve in a contagion
within the graph, leading to a cascade of node departures.

In this paper, we model and study the engagement properties of
real-world social graphs. Our approach capitalizes on recent results
in the field of game theory, where the engagement property can
be considered in a similar manner as a product adoption process

1http://en.wikipedia.org/wiki/Social_engagement .



[17, 12, 8]. In the case where individuals decide simultaneously
whether to remain engaged or depart from the graph, the engage-
ment level of each node can be captured by the properties of the
k-core decomposition [22]. Based on this point, we propose mea-
sures for characterizing the engagement at both node level as well
as at graph level. We examine in detail the properties of a large
number of real graphs, trying to better understand the engagement
dynamics.

The main contributions of the paper can be summarized as fol-
lows:

• Problem statement: We study the property of engagement in
social graphs and how it can be used to model the departure
dynamics of nodes in the graph.

• Measures of engagement: Based on game theoretic models,
we propose interesting measures for characterizing the en-
gagement at both node level as well as at graph level.

• Experiments on real graphs: We perform a large number of
experiments in several real-world graphs, examining the en-
gagement dynamics and observing interesting properties.

• Implications of our study: We discuss the implications of our
study regarding a new problem of robustness/vulnerability
assessment in real graphs, where nodes decide to leave the
graph based on their own incentives.

The rest of the paper is organized as follows. Section 2 gives
the related work and Section 3 provides the necessary background.
Then, in Section 4 we describe the model and the proposed engage-
ment measures. Section 5 presents the experimental evaluation of
our method, while in Section 6 interesting implications of our study
are discussed. Finally, we conclude in Section 7.

2. RELATED WORK
In this section we review the related work, regarding the engage-

ment dynamics in social graphs, as well as other applications of the
k-core decomposition. In the very recent literature, there has been
presented some game-theoretic models for the problem of product
adoption in networked environments [17, 12, 8]. These models
form the basis of our approach and are described in detail in Sec-
tion 4. To the best of our knowledge, the only related work that
provides experimental study for the problem of node departures in
social networks, is the work presented in [25]. There, the authors
study two real social networks and examine whether the departure
dynamics show similar behavior with the arrival dynamics. In the
case of node departures, the authors of [25] observed that the ac-
tive users typically belong to a dense core of the graph, while in-
active users are placed on the sparsely connected periphery of the
graph. As we will present later, the property of node engagement
can be considered complementary to the one of node departure, and
our approach provides a more refined modeling of the observations
made in [25]. Moreover, related to our work can be considered re-
cent studies about the formation dynamics of communities [5, 14],
as well as studies about diffusion and contagion in social graphs
[23, 4, 21, 10].

As we will present in Section 4, our method builds upon the
properties of the k-core decomposition in a graph (see Section 3
for more details). Broadly speaking, the k-core decomposition has
been applied in the past for extracting the most coherent subgraphs
[22], graph visualization [26], identification of influential spreaders
[13], and for studying [3] and modeling [9] the Internet topology.
In this work, we examine one more application domain of the k-
core decomposition in the problem of node engagement in social

graphs; in contrast to the previous studies that mostly focus on the
nodes of the best k-core subgraph, in this paper we are interested in
the hierarchy produced by the decomposition, since it can provide
meaningful insights about the engagement dynamics of the graph.

3. PRELIMINARIES AND BACKGROUND
In this section we briefly discuss the properties of the k-core

decomposition [22], which is utilized by our method. Let G =
(V,E) be an undirected graph, where |V | = n and |E| = m. A
graph H is a subgraph of G, denoted by H ⊆ G, if H can be
obtained from G after removing edges or vertices.

DEFINITION 1 (k-CORE SUBGRAPH). Let H be a subgraph
of G, i.e., H ⊆ G. Subgraph H is defined to be a k-core of G if
it is a maximal connected subgraph of G, in which all nodes have
degree at least k.

DEFINITION 2 (GRAPH DEGENERACY δ∗(G)). The degener-
acy δ∗(G) of a graph G is defined as the maximum k for which
graph G contains a non-empty k-core subgraph.

DEFINITION 3 (NODE’S CORE NUMBER). A node i has core
number ci = k, if it belongs to a k-core but not to any (k+1)-core.

A k-core of a graph G can be obtained by repeatedly deleting
all vertices of degree less than k. Furthermore, the k-core decom-
position – which assigns a core number ci to each node i ∈ V –
can be computed efficiently, with complexity O(m + n) propor-
tional to the size of the graph [7]. The most important point is that
the k-core decomposition creates an hierarchy of the graph, where
“better” k-core subgraphs (i.e., higher values of k) correspond to
more cohesive parts of the graph.

4. PROBLEM FORMULATION AND PRO-
POSED METHOD

In this section, we formulate the problem of modeling and quan-
tifying the engagement dynamics in a social interaction graph. We
begin by discussing the main factors that intuitively affect the de-
cision of nodes to remain engaged or leave the graph. Then, we
present the theoretical model used to approximate and capture the
engagement behavior of nodes, as well as the proposed engagement
measures at both node and graph level.

4.1 Problem Statement and Model Description
Our goal is to model and study the problem of node engagement

in social graphs. Informally, the property of engagement captures
the incentive of individuals to remain engaged in the graph, as op-
posed to their decision of departure. In the context of this paper, we
are interested in the engagement dynamics of individuals as well as
of the whole system, from a network-wise point of view. In other
words, we consider only the underlying graph structure of a social
system, and based on its properties we derive measures that char-
acterize the behavior in terms of engagement.

Typically, each individual that participates in a social activity –
as expressed by his/her participation in a social graph – derive a
benefit. In most of the cases, this benefit emanates from his/her
neighborhood, as captured by the node degree in the social graph.
Furthermore, one additional factor that affects the benefit of each
individual is the degree of interaction among its neighbors [23], in
the sense that if one’s friends tend to highly interact among each
other, the benefit of remaining engaged in the graph could poten-
tially be increased.



Let us now suppose that a user decides to drop out from his com-
munity due to the fact that the incentive of staying has been re-
duced. This decision will cause direct effects in his neighborhood,
in the sense that some of his friends may also decide to depart.
More precisely, a departure can become an epidemic (or contagion),
forming a cascade of individual departures; nodes will decide to
leave and this will also affect not only their neighbors but also the
whole community. Therefore, according to the notion of direct-
benefit effects, individuals who want to incur an explicit benefit by
remaining engaged, they should align their decision with the one of
their neighbors [10].

Next, we present our model and the proposed measures for en-
gagement in social graphs. Each node v ∈ V – that corresponds
to an individual – can either remain engaged in the network or can
decide to depart. As we mentioned earlier, it is natural that the deci-
sion of each node should be based on the decisions of its neighbors.
The behavior of nodes as a system can be expressed using game-
theoretic concepts, and more precisely it can be captured by the
notion of networked coordination games [10]. That is, the prop-
erty of engagement can be viewed as a network model based on
direct-benefit effects: the node’s benefit of remaining engaged in
the graph increases as more neighbors decide respectively to stay
in the graph. This formulation has been extensively studied in the
areas of game theory and economics. It is applied in situations
where the nodes have to choose between two possible alternatives
and the structure of the underlying social network affects the de-
cision: for two neighborhood nodes u and v, there is an incentive
to be aligned with the same decision, since that way they will both
increase their benefits produced by the underlying interactions.

In a similar way, since the benefit of each node for staying in the
network emanates from its neighbors, the problem can be modeled
using similar concepts with the ones of coordination games. We
consider that the nodes of the graph – which correspond to ratio-
nal individuals/players – decide simultaneously whether to stay or
leave. Each node i ∈ V has the same set of possible strategiesX =
{0, 1}, i.e., leave or stay in our case. Let x = [x1, x2, . . . , xn] be
the vector that denotes the decision of each node. The payoff (or
utility) of a node i given the behavior of the rest nodes (as captured
by vector x), can be expressed as:

Πi(x) = benefit
(
xi,

∑
j∈Ni

xj
)
− cost(xi), (1)

where benefit(·) and cost(·) are the node’s benefit and cost func-
tions respectively and Ni = {j ∈ V : (i, j) ∈ E} is the neighbor-
hood set of node i. In other words, the benefit of each node depends
on its own decision xi and the aggregate decisions of its neigh-
bors; this captures at a large extend the problem of engagement
estimation, since in many cases a user remains engaged accord-
ing to the degree of interactions with its friends in the community.
Furthermore, every node i incurs a cost for remaining engaged in
the graph, which depends only on its own action. While the actual
form of the cost function does not need to be apriori known in the
model, it is clear that a node will decide to stay engaged if its cost
is not higher than its benefit. Let cost(xi) = k be the cost value
of each node i ∈ V . Then, according to Eq. (1), every node that
will remain engaged should have non negative payoff, and there-
fore Πi(x) = |N x=1

i | − k, where |N x=1
i | is the number of i’s

neighbors that finally remain engaged, i.e., the degree of i in the
graph induced by nodes with decision x = 1.

Thanks to some very recent results in the area of game theory,
the equilibrium of this game corresponds to the core number ci of
each node, as produced by the k-core decomposition [17, 12, 8].
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Figure 1: Probability of departure vs. core number. The dis-
continuities in the plot correspond to zero (we plot only the
cores from which nodes depart).

PROPOSITION 1 (EQUILIBRIUM PROPERTY, [17, 12]).
The best response (Nash equilibrium) of each node i ∈ V in the
model presented above corresponds to the core number ci.

In other words, in the case of equilibrium, every node in the induced
subgraph S formed by nodes with xi = 1 should have minimum
degree k, satisfying the property of ci ≥ k. That way, no engaged
node will have incentive to depart from S and no node outside S,
i.e., in V −S, will have at least k neighbors in S in order to remain
engaged after his departure. As noted by the authors in [17, 12,
8], the game has multiple equilibria, but the maximum one corre-
sponds to the “best” k-core structure of the graph (i.e., k = δ∗(G)).
In our case, we are interested in all nodes in the graph and not only
on those that form the best equilibrium; as we will present shortly
these nodes show interesting properties.

4.2 Engagement Measures
Having presented the basic theoretical model, we now proceed

with the proposed measures for characterizing the engagement dy-
namics on graphs. We are interested in studying the engagement
properties at both node (local) and graph (global) level; further-
more, we are interested in examining the behavior of specific sub-
graphs – as produced by the k-core decomposition – which include
nodes with specific engagement level.

Capitalizing on Proposition 1, we quantify the property of node
engagement using the k-core decomposition, and more specifically
the core number ci of each node i ∈ V .

PROPOSITION 2 (NODE ENGAGEMENT). The engagement le-
vel ei of each node i ∈ V is defined as its core number ci.

Typically, nodes that belong to higher cores of the graph (higher
core number), show better engagement and therefore it is less prob-
able to depart (or, at least, the incentive to depart is lower). As we
discussed in Section 4.1, the core number of each node is a rea-
sonable metric (or estimator) to capture and model the engagement
dynamics: nodes remain engaged if their neighbors (and the neigh-
bors of their neighbors, etc.) also remain engaged. On the other
hand, if a node decides to depart, this may affect the engagement
level of its neighbors – which may decide to leave as well – forming
a cascade of potential departures in the graph. This dynamic effect
of cascades is naturally captured by the k-core decomposition and
the core number of nodes.

Figure 1 provides some empirical observations regarding the de-
parture of nodes – on data with available relevant information – that
can be used to support our modeling approach. As it is difficult to
access social graph data where nodes (users) explicitly define their
departure time, we have examined two snapshots of the Internet



topology (CAIDA and OREGON Autonomous Systems) with avail-
able dropout information. Figure 1 depicts the probability of depar-
ture vs. the core number ci of a node. As it can be observed, nodes
that belong to smaller cores (close to the first core) are more prob-
able to leave the graph, thus supporting our modeling approach.
Moreover, this property is persistent for several time snapshots of
the graphs.

Additionally, the proposed engagement metric can be considered
as a more refined modeling explanation of the departure dynamics
in social graphs, as very recently observed in [25]. The authors
of Ref. [25] studied the behavior of user departures in social net-
works and based on some inactivity criteria (e.g., in a co-authorship
network, a user is considered inactive if he/she has not published
a paper in a time period of more than five years), they observed
that nodes which belong to the densely connected core of the graph
mainly correspond to active users. On the other hand, inactive users
(i.e., users that potentially have left the graph) belong to the periph-
ery of the graph. In other words, the departure of nodes is propor-
tional to their position in the graph, with nodes in the fringe of
the graph presenting higher probability to dropout. Our modeling
approach and the node engagement metric e – based on the proper-
ties of the k-core decomposition – quantify in a precise manner the
above structural observations.

We should note that, here we examine the dynamics of engage-
ment (and thus of departure) by a simple model and metric, that
approximates real settings and observations in a concise manner.
However, we do not argue that the engagement of a user is solely
proportional to his core number; other external factors may affect
its behavior as well. Nevertheless, in the rather realistic case where
each node decides to remain engaged for maximizing its revenue
by the participation in the community – thus considering the deci-
sion of its neighbors – the behavior can be modeled by the proposed
metric.

Furthermore, as we will see in the experimental results, the de-
gree of a node is not an accurate estimator of the departure dynam-
ics: while high degree is necessary for achieving higher engage-
ment and higher core number, the opposite is not always true. In
many cases, high degree nodes have low core number because of
the fact that their neighbors are not well connected among each
other2. Therefore, the engagement should be described by a met-
ric able to capture both the size of node’s neighborhood as well as
its connectivity. In Section 5 where the experimental results are
presented, we also examine how other well-known structural char-
acteristics of the graph (e.g., degree, triangle participation ratio,
clustering coefficient) affect the engagement behavior.

Based on this model of user behavior, we also propose to study
the characteristics of the subgraphs produced in the case of sim-
ple scenarios, where nodes with certain engagement index k (for
various values of k) decide simultaneously to drop out. The sub-
graph that remains after such types of departures is defined as the
k-engagement subgraph Gk.

DEFINITION 4 (k-ENGAGEMENT SUBGRAPH Gk). Let k be
a integer parameter such that a node remains engaged in G if at
least k neighbors are engaged. The graph Gk which is induced
by nodes i ∈ V with engagement level ei ≥ k is defined as the
k-engagement subgraph.

The k-engagement subgraphs correspond to interesting structures
of the graph. Actually, for a specific value of k, subgraph Gk rep-
resents the remaining graph, after the cascading effect where nodes

2A similar behavior has been reported in [3] in the context of Inter-
net graph analysis.

with engagement lower than k have left the graph. The properties
of the remaining subgraph – as captured by Gk – are crucial towards
a better understanding of the engagement characteristics, as well as
for examining the functional operation of the remaining graph. As
we will present shortly, the size distribution of Gk for various val-
ues of k can inform us about the overall engagement level of the
graph. Furthermore, it is interested to study whether well-known
structural properties – such as the degree distribution of the graph
– are retained after such types of nodes’ departures. We also note
that, following the properties of k-core decomposition, subgraphs
Gk form a nested hierarchy G0 ⊇ G1 ⊇ G2 ⊇ . . . ⊇ Gk for the
possible values of k, in the sense that subgraphs of higher k also
belong to Gk’s of lower k.

Of particular interest is the subgraph Gk that corresponds to the
maximum value of engagement e. In terms of k-core decomposi-
tion, the nodes with the highest engagement level emax are those
who belong to the best k-core of the graph, i.e., k = δ∗(G), where
δ∗(G) is the degeneracy of the graph [22].

PROPOSITION 3 (MAX-ENGAGEMENT SUBGRAPH). Let
k = δ∗(G) be the degeneracy of the graph, i.e., the maximum k
such that there exists a k-engagement subgraph. In our context, we
consider this value as the maximum engagement level of the graph,
i.e., emax = δ∗(G) and we denote the Max-Engagement Subgraph
as Gemax .

The Max-Engagement subgraph is composed by the nodes of the
graph that show the highest engagement level e = emax. More pre-
cisely, each node i ∈ Gemax has degree di ≥ emax within Gemax ,
implying that this set of nodes has potentially the lowest incentive
to depart from the graph and thus it corresponds to the best engaged
nodes. As we will discuss in Section 6, this subgraph also contains
the most influential nodes of the graph, in terms of departure dy-
namics.

Having defined the engagement index of each node in the graph
as well as the notion of the k-engagement subgraphs, it would be
interesting to summarize this information into one value capable to
describe the engagement level of the whole graph. That is, each in-
dividual node contributes to the engagement of the graph – accord-
ing to its engagement index ei,∀i ∈ V – based on the best core ci
that the node belongs to. Ideally, in terms of engagement, it would
be better to have a large fraction of the nodes of the graph belonging
to largest cores, thus showing higher engagement. In the extreme
case of the graph with the best engagement properties – which cor-
responds to the complete graph Kn = (VKn , EKn) – all nodes
belong to the Max-Engagement subgraph and their engagement in-
dex is equal to ei = |VKn | − 1, ∀i ∈ VKn . In order to capture this
behavior, we consider the area under the curve of the cumulative
distribution of the k-engagement subgraphs’ sizes. However, since
the graphs do not have the same maximum engagement level emax,
we normalize this value for each graph into the interval [0, 1], based

on a simple normalization: Normalized ej =
ej −min(e)

max(e)−min(e)
,

where j = 1, . . . , emax, min(e) = 1 and max(e) = emax (for sim-
plicity, we consider that all nodes in the graph have degree at least
one, therefore the minimum engagement is 1).

PROPOSITION 4 (GRAPH ENGAGEMENT). Let F(e) =
Pr(X ≥ e) be the cumulative distribution function of the sizes of
the k-engagement subgraphs. Then, the total engagement level of
a graph G, denoted as EG, is defined as the area under the curve
of F(e), e = [0, 1], i.e.,

EG =

∫ 1

0

F(e) de. (2)
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Figure 2: Schematic representation of the engagement index
EG. The red curve shows an example of the cumulative distri-
bution of the engagement level of the k-engagement subgraphs.
The area under the curve (light blue region) captures the en-
gagement properties of the graph. The orange colored curve
shows the engagement level of the complete graph Kn.

Figure 2 depicts a schematic representation of the engagement in-
dex EG. The horizontal axis corresponds to the normalized en-
gagement value e, while the vertical axis represents the probability
Pr(X ≥ e) that a node has (normalized) engagement level at least
e (as produced by the sizes the k-engagement subgraphs). The
values of EG are in the range of [0, 1], with higher values indi-
cating graphs with higher total engagement level (larger area un-
der red curve). In the case of the complete graph (orange colored
curve), the probability that a node has normalized engagement at
least e,∀e ∈ [0, 1], is Pr(X ≥ e) = 1. In other words, every node
in the graph has engagement ei = |VKn | − 1, and therefore the
size of the k-engagement subgraphs, for k = 1, . . . , emax, is equal
to the size of the whole graph, i.e., |VKn |.

4.3 Discussion
Having presented the proposed engagement measures, we briefly

discuss on an important point in the modeling approach followed by
our method. Our approach and the proposed engagement measures
are build upon the game presented in Section 4.1, which consid-
ers that nodes have complete information about the structure of the
graph [10, 17]. Although this assumption may not be very accu-
rate in many settings where individuals should take a decision (to
remain engaged or to depart in our problem), we consider that in
this case is valid since our goal is to model and to provide a high
level study of the behavior of individual nodes and of the graph as
a whole, regarding their engagement properties. Thus, our study
builds upon the fact that we have knowledge of the structure of the
graph. In a typical application scenario of our approach, the ad-
ministrator of a social graph (e.g., FACEBOOK) – who has global
knowledge of the structure of the graph – can use the proposed
measures to examine the engagement dynamics of the graph and to
potentially detect nodes that tend to leave, due to their low engage-
ment.

5. ENGAGEMENT OF REAL GRAPHS
In this section we present detailed experimental results of the

proposed engagement measures, at both local (node) and global
(graph) level. The experiments were designed to address the fol-
lowing points:

P1: Study the characteristics of the engagement dynamics in real
graphs.

P2: Examine how other graph features affect the engagement of
the graph.

As we have already mentioned, we consider that the feasibility
and applicability of our approach is supported by the results de-
picted in Fig. 1 and by very recent observations about the depar-
ture dynamics in social graphs [25]. Actually, here we present a
more refined explanation of the departure dynamics, studying the
complementary property of engagement. Furthermore, the time
complexity of our approach is linear with respect to the size of the
graph, as it relies on the computation of the k-core decomposition
(see Section 3).

Table 1 presents the datasets used in our study. All of them are
publicly available and correspond to well-known social and collab-
oration networks (except from the last datasets used to support our
modeling approach).

5.1 High Level Properties of k-Engagement Sub-
graphs

As we described in Section 4, a reasonable estimator for the en-
gagement properties of a node is its core number, i.e., ei = ci, ∀i ∈
V . One important aspect here is to examine the size distribution of
the k-engagement subgraphs, i.e., the size of the subgraphs that
contain nodes with engagement e at least k. That is, for the various
possible values of parameter k (that depend on the graph), we study
the properties of the k-engagement subgraphs. These characteris-
tics can help us to further understand the engagement dynamics of
real graphs, both at node and at graph level. Figure 3 (red curve)
depicts the results for the real graphs presented in Table 1.

As we can observe, for most of the datasets, the distribution of
the sizes of the k-engagement subgraphs is almost skewed, mean-
ing that the highly engagement subgraphs (for larger values of k)
are relatively small in size. In other words, most of the nodes in
the graph have small engagement index e, while a few nodes are
highly engaged. Of course, we should note that the size distribu-
tions are not identical for all the graphs we have examined. Fur-
thermore, the maximum engagement level emax as well as the size
of the Max-Engagement subgraph Gmax – that corresponds to the
tail of the distribution – present different behavior for some of the
examined datasets. We will discuss these points next in the paper.

One important question here is if these observations regarding
the engagement properties of graphs, capture the behavior of a real
system – and thus can be characterized as patterns of real graphs.
In other words, is there any difference between the Gk’s size distri-
bution of real graphs and random ones? To answer this question,
we have examined the engagement properties of a configuration
model, i.e., a random graph model with the same degree distribu-
tion as the original one. As we can observe from Fig. 3 (green
curve), a random rewiring of the original graph causes a different
size distribution for the k-engagement subgraphs. More precisely,
for most of the examined datasets, the random equivalent graph
shows a much lower number of engagement levels, but the size
of the Max-Engagement subgraph is much larger compared to the
original one – indicating different behavior in terms of engagement.
This observation is somewhat expected; random graphs are known
to have a large core and thus Max-Engagement subgraphs of rela-
tively large size [19].

However, for a few datasets we have observed an unexpected but
rather interesting behavior. For example, YOUTUBE and EMAIL-
EUALL social graphs show an almost similar size distribution be-
tween the original graph and the random equivalent one. Addition-
ally, EMAIL-EUALL has a much smaller maximum engagement
index emax compared to the random rewired graph. To better exam-
ine this deviation as well as for having a more refined explanation



Table 1: Summary of real-world networks used in this study.

Network Name Nodes Edges Description

FACEBOOK [24] 63, 392 816, 886 Facebook New Orleans social network
YOUTUBE [18] 1, 134, 890 2, 987, 624 Social network from Youtube
SLASHDOT [16] 82, 168 582, 533 Slashdot social network (Feb. ’09)
EPINIONS [20] 75, 877 405, 739 Who trusts whom network
EMAIL-EUALL [15] 224, 832 340, 795 E-mail network
EMAIL-ENRON [16] 33, 696 180, 811 E-mail network
CA-GR-QC [15] 4, 158 13, 428 Co-authorship network in General Relativity
CA-ASTRO-PH [15] 17, 903 197, 031 Co-authorship network in Astro Phys.
CA-HEP-PH [15] 11, 204 117, 649 Co-authorship network in High Energy Phys.
CA-HEP-TH [15] 8, 638 24, 827 Co-authorship network in High Energy Phys. Th.
CA-COND-MAT [15] 21, 363 91, 342 Co-authorship network in Condensed Matter
DBLP [1] 404, 892 1, 422, 263 Co-authorship network from DBLP
CAIDA/OREGON [15] 26, 475/11, 461 106, 762/32, 730 Autonomous systems graphs
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(a) CA-GR-QC (b) CA-ASTRO-PH (c) CA-HEP-PH (d) CA-HEP-TH
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(i) SLASHDOT (j) EPINIONS (k) EMAIL-EUALL (l) EMAIL-ENRON

Figure 3: Size distribution of the k-engagement subgraphs. Each plot depicts the size distribution of the k-engagement subgraphs
vs. k, where k = 1, . . . , emax. The red line corresponds to the distribution of the original graph, while the green one to the random
graph with the same degree sequence as the original one.

of the observed engagement properties, we have computed a set of
high level characteristics of the k-engagement graphs. More specif-
ically, we focus on the properties of the Max-Engagement subgraph
Gemax , trying to understand and capture which factors potentially af-
fect the engagement properties of the graph.

Figure 4 depicts the relationship between some high level char-
acteristics of the Max-Engagement subgraphs Gemax with important
global features of the graph (for the datasets of Table 1). We ar-
gue that examining interesting correlations between graph features
and the observed engagement characteristics, we can draw mean-
ingful conclusions about the engagement dynamics of real graphs.
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Figure 4: Characteristics of the Gemax subgraphs of the studied graphs (Table 1). (a) Maximum engagement level emax vs. the size
of the whole graph. (b) Number of nodes in the Max-Engagement subgraph vs. the size of the whole graph (Pearson correlation
coefficient ρ = 0.6394). (c) Number of nodes in the Max-Engagement subgraph vs. maximum engagement level emax. Observe the
different behavior between the collaboration (co-authorship) graphs and the social networks from social media applications. (d)
Maximum engagement level emax vs. fraction of closed triplets in the whole graph G.

Initially, we consider the relationship between the size of the full
graph, i.e., |V | and the characteristics of the Max-Engagement sub-
graphs, namely the maximum engagement level emax and the num-
ber of nodes in Gemax . As we can see from Fig. 4 (a), for the major-
ity of the examined datasets (green colored squares), the size |V | of
the graph shows an almost linear correlation (in log-log axis) with
the maximum engagement level emax. However, YOUTUBE (blue
colored circle) and CA-HEP-PH (red colored circle) clearly devi-
ate from this relationship (if we ignore these two graphs, Pearson’s
correlation coefficient is ρ = 0.75). While YOUTUBE corresponds
to the largest graph of our collection, its emax value is relatively
small. On the other hand, CA-HEP-PH has a relatively small size,
while its maximum engagement level is extremely high. Thus, it
seems that to achieve a higher emax value, the size of the graph is
not the only responsible factor. That is, as we have already men-
tioned, the existence of clustering structures in the graph plays a
crucial role for the engagement properties.

Figure 4 (d) depicts the relationship between the fraction of closed
triplets in the graph (triplets of nodes that form triangles) with the
maximum engagement level. As we can observe, CA-HEP-PH has
the largest fraction of closed triplets in our collection as well as the
highest emax value, although its size is relatively small. On the other
hand, YOUTUBE shows an almost opposite behavior. Despite its
large size, the fraction of closed triplets and the maximum engage-
ment level are relatively small (in Section 5.4, we present a more
detailed examination about the relationship of the engagement and
the existence of clustering structures in the graph).

Figure 4 (b) depicts the number of nodes in the graph vs. the
number of nodes in the Max-Engagement subgraph Gemax . Here,
we can observe a more clear correlation between |V | and the size
of Gemax (Pearson’s correlation coefficient ρ = 0.6394).

Lastly, in Fig. 4 (c), we study the size of Gemax vs. the emax values
of the graphs. We can observe two different behaviors in the stud-
ied datasets. On the one hand, we have the collaboration graphs –
formed by co-authorship relationships. Although they capture dif-
ferent scientific disciplines, we can observe an almost linear cor-
relation in log-log scale. Furthermore, in many cases, the size of
Gemax is almost equal to the maximum engagement level emax, in-
dicating tightly knit communities at this portion of the graph. For
example, in the case of the DBLP co-authorship graph, the Max-
Engagement subgraph corresponds to a set of around 115 author
that have co-authored the same paper. On the other hand, the graphs
from online social networking and social media applications, fol-
low a different behavior: the maximum engagement level is kept
below a threshold of about 100 and the values are close to each
other – almost constant – although the datasets are of different size,
while the number of nodes in Gemax increases. This can be possibly

explained by the nature of interactions in online social network-
ing applications; although an individual can achieve a high number
of friendship connections, the degree of collaboration – and simi-
larly of engagement – among them is constrained to the threshold
of around 100 nodes. We also note that, the value of emax almost
matches the size of the best communities (around 100 nodes) ob-
served by Leskovec et al. [16].

5.2 Graph’s Engagement Properties
Having examined the properties of the k-engagement subgraphs,

we proceed to the computation of the total graph engagement index
EG. As we described in Section 4, the global engagement proper-
ties of the graph can be captured by the area under the curve of
the normalized cumulative size distribution of the k-engagement
subgraphs. That is, for each graph, we normalize the engagement
level e in the interval [0, 1] and we plot the cumulative distribu-
tion Pr(X ≥ e), i.e., the fraction of nodes with normalized en-
gagement at least e. Since we are not only interested in the maxi-
mum engagement level of each graph but on how individual nodes
are distributed within the different levels (as expressed by the k-
engagement subgraphs), we are able to compare the engagement
properties of different graphs. Figure 5 depicts the results for the
collection of graphs of Table 1. Furthermore, Table 2 shows the EG
values that correspond to the area under curve.
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(a) Social graphs (b) Collaboration graphs

Figure 5: Normalized cumulative distribution function of k-
engagement subgraphs. Each curve corresponds to the prob-
ability Pr(X ≥ e), i.e., the fraction of nodes with normalized
engagement at least e. The area under curve captures the en-
gagement index EG for the whole graph.

In the case of social graphs (Fig. 5 (a)), we can observe that
the graph with the maximum engagement index EG is FACEBOOK.
Although FACEBOOK does not have a large maximum engagement
level emax, nodes are well distributed within levels, with a “good”
fraction of nodes having high (normalized) engagement e. Looking



Social Graph EG
FACEBOOK 0.2514
YOUTUBE 0.0441
SLASHDOT 0.1221
EPINIONS 0.0755
EMAIL-EUALL 0.0277
EMAIL-ENRON 0.1245

Collab. Graph EG
CA-GR-QC 0.0971
CA-ASTRO-PH 0.2293
CA-HEP-PH 0.0651
CA-HEP-TH 0.0969
CA-COND-MAT 0.1924
DBLP 0.0338

Table 2: Graph engagement values EG for social (left table) and
collaboration (right table) graphs.

now at the collaboration graphs (Fig. 5 (b)), a first observation is
that the DBLP graph shows the lower engagement index EG, com-
pared to the rest co-authorship graphs. One possible explanation is
that DBLP covers several areas of computer science, with a signif-
icant number of relatively “new” authors. These authors, typically
belong to lower cores of the graph, and thus their engagement is
relatively low. On the other hand, the rest of the co-authorship
networks correspond to more robust communities, where a larger
fraction of authors (nodes) has higher engagement level.

5.3 Near Self Similar k-Engagement Subgraphs
In this section, we are interested to study the properties of the k-

engagement subgraphs, under a simple scenario where nodes with
low engagement e decide to depart. More specifically, we study the
existence of self-similar properties in the k-engagement subgraphs
and we focus on the simplest such property which is the existence
of a skewed degree distribution. This property is crucial for the
k-engagement subgraphs from several viewpoints. First of all, the
degree of each node corresponds to an important structural charac-
teristic and therefore it is interesting to examine to what extend it
is preserved by the cascade of node departures. Furthermore, the
existence of hubs in the k-engagement subgraphs is another crucial
point, since – among other things – it is related to how fast infor-
mation is disseminated in the graph and to the well known type of
robustness under targeted/random node attacks [2]. Therefore, we
are still interested to examine the major characteristics and func-
tionalities of the graph after a cascade of dropouts.

Figure 6 depicts the cumulative degree distribution of the k-
engagement subgraphs, under different values of k (note that, k =
1 corresponds to the whole graph). A first observation is that the
shape of the distribution is retained for the examined values of k. In
other words, for the very first levels of engagement, an almost scale
invariance is presented, with respect to the scenario of node depar-
tures. However, we do not argue that this property is retained for
all the engagement levels, i.e., e = 1, . . . , emax

3. Similar properties
hold for the rest datasets.

An interesting point here is to examine the diversity of nodes
– in terms of degree – that finally depart. In our scenario, nodes
with low engagement decide to drop out. How is this mapped to
the degree distribution? Typically, we expect that the nodes which
depart, correspond to low degree ones. The crucial point here is
that the produced cascades can cause the departure of high degree
nodes as well, since their engagement level may be reduced. This
is actually the major difference between the problem of node de-
partures – based on the engagement level – studied by our paper,
compared to removals of nodes based on possible failures [2].

As we can observe from Fig. 6, for different values of k, the
tail of the distributions – that captures high degree nodes – is also
affected by the cascade of low-engaged node departures. To make

3A similar behavior has been also noted for the Internet graph [3].
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Figure 6: Cumulative degree distribution of k-engagement sub-
graphs Gk, for various values of k. Note that, the tail of the
distribution also changes for different values of k.

this observation more precise, we compute the correlation between
nodes’ degree and their engagement index e. Clearly, high degree
is required to achieve high engagement; however, the degree alone
is not an indicator of high engagement. Figure 7 depicts the node
engagement index e vs. the degree of each node (we focus only
on four datasets of our collection). Clearly, a large fraction of high
degree nodes show low engagement level, and thus it is more prob-
able to depart. This is also an indication that the importance of
some hub nodes in the graph diminishes, in terms of engagement
dynamics. Lastly, we have examined this aspect in the case of ran-
dom graphs with the same degree distribution as the original ones.
As it can be shown from Fig. 7, these graphs show more smooth
behavior compared to real ones; this is one more evidence about
the differences in terms of engagement between real and random
rewired graphs.

5.4 Engagement and Clustering Structures
As we have already discussed, it is expected that the engage-

ment level of a node should be closely related to local clustering
structures of the graph, indicating increased level of collaboration
among nodes of the same neighborhood. Actually, the authors of
[25] report that the probability of departure is related to the over-
all neighborhood activity of a node. In the more general problem
of influence and product/behavior/idea adoption in a social system,
the probability that a user will finally proceed with the adoption,
is proportional to the size, as well as to the connectivity of the
neighborhood [21, 5]. Furthermore, the high level characteristics
presented in Fig. 4 (d), indicate a relationship between the fraction
of closed triplets in the graph and the maximum engagement level.
This is an interesting evidence, in the sense that in higher order k-
engagement subgraphs (i.e., higher values of k), a higher degree of
cohesiveness exists.

In fact, the number of triangles that each node participates to,
seems to be vital for its core number and therefore for its engage-
ment index. Additionally, the fraction of closed triplets in a graph
is closely related to the clustering coefficient – a measure that in-
form us about the tendency of nodes to cluster together, forming
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Figure 7: Node engagement vs. node degree. Correlation be-
tween engagement and degree for each node in the graph. Pur-
ple squares correspond to real graphs and green circles to the
random ones. For the real graphs, observe that high degree
nodes can also have relatively small engagement.

tightly knit groups4. Recently, Gleich and Seshadhri [11] showed
that the number of cores in real-world graphs depends on the global
clustering coefficient, where graphs with higher global clustering
coefficient tend to have larger number of cores.
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Figure 8: Average clustering coefficient per k-engagement sub-
graphs Gk. Observe that the clustering coefficient is gradually
increasing for larger values of k = 1, . . . , emax.

Focusing now on the clustering properties of the k-engagement
subgraphs, for different values of k ranging from k = 1, . . . , emax,
we examine how the clustering structure (as captured by the clus-
tering coefficient) is affected by the departure of nodes. Figure 8
depicts the average clustering coefficient (CC) of each possible k-
engagement subgraph, for four datasets of our collection. As we
can observe, the CC increases gradually as we are moving to Gk’s
of higher engagement, indicating more cohesive subgraphs with
higher degree of interactions among nodes. Actually, this captures
the expected behavior of k-engagement subgraphs, in the sense that
nodes which belong to higher order Gk (higher values of k), should

4http://en.wikipedia.org/wiki/Clustering_
coefficient.
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Figure 9: Node engagement vs. triangle participation score.
Correlation of the node engagement index with the number of
triangles that each node participates to.

demonstrate stronger degree of collaboration with their neighbors
and thus higher engagement.

Lastly, we consider the clustering properties at node level and we
examine how the triangle participation score of each node i ∈ V
(i.e., the number of triangles that each node participates to) is re-
lated to the engagement index ei. Figure 9 presents the correlation
of the engagement index e for each node vs. the triangle partici-
pation score. It seems that the triangle participation score approx-
imates better the engagement level of a node (compared to the de-
gree), supporting also our intuition that the existence of triangles is
vital for the engagement properties.

6. DISENGAGEMENT SOCIAL CONTAGION
In this section, we briefly discuss some potential implications

of our observations, regarding the property of engagement. As we
presented in Section 4, the engagement of a node is proportional to
its core number, and captures its incentive to remain in the graph.
As we observed from the experimental results in Section 5, the size
distribution of the k-engagement subgraphs is skewed, indicating
that a large fraction of nodes typically show a relatively low en-
gagement. Then, based on the size distribution, we were able to
characterize the engagement properties of the whole graph. In that
case, graphs in which a large portion of their nodes has high en-
gagement level, correspond to more robust graphs in terms of de-
partures. In other words, in such graphs, a relatively high portion
of nodes (based on the size of the full graph) do not has incentive
to depart.

However, an interesting behavior can possibly occur if we con-
sider a scenario under which nodes can also depart independently
of their engagement level. In other words, although there is no in-
centive to depart, nodes decide to drop out possibly due to some ex-
ternal factors. In that case, graphs with high engagement index EG,
will be vulnerable under targeted node departures, i.e., when nodes
with high engagement value e decide to depart. That is, the “disen-
gagement” cascade that will be formed, will have higher effect in
the graph and potentially could cause a relatively large number of
nodes to depart as well. In the more general case, according to the
skewed size distribution of the k-engagement subgraphs (Fig. 3),



we can say that real graphs tend to be robust under random node
departures, but vulnerable to targeted ones. This mainly happens
due to the fact that most of the nodes in the graph have relatively
low engagement, while a few nodes show high engagement value.

Note that, this type of robustness assessment moves on a similar
axis as the well known result about the robustness of real graphs
under random/targeted node removals based on their degree. In that
case, the seminal result by Albert and Barabási [2] states that, due
to the existence of a skewed degree distribution, real graphs are
robust against random attacks but vulnerable to targeted ones (in
the case of hub nodes). As future work, we plan to experimentally
examine how such types of engagement-based departures affect the
structural characteristics of the graph (e.g., connectivity, diameter).

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have studied the problem of engagement es-

timation in a social graph. Based on a game-theoretic model, we
proposed several ways to examine the engagement dynamics, at
both node level as well as at graph level.

The main contributions of the paper are the following:

• Problem statement: We studied the property of engagement
in social graphs and we examined how it can be used to
model the departure dynamics of the nodes in the graph.

• Measures of engagement: We proposed interesting and easy
to compute measures for characterizing the engagement dy-
namics at both node and at graph level.

• Experiments on real graphs: We performed several experi-
ments on real-world graphs, observing interesting properties
about the engagement dynamics.

As future work, we plan extend our study on more complex types
of graphs, such as directed and signed graphs, where the engage-
ment characteristics may behave in a different way. Furthermore,
one important point is to further examine this new notion of robust-
ness in real graphs, based on departures of individuals due to their
engagement level and not by external attacks or failures.
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