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Habilitation à diriger des recherches
de l’Université Paris-Saclay
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R É S U M É

Les graphes, également appelés réseaux, sont des structures de données largement
utilisées pour modéliser des systèmes complexes dans divers domaines, des sciences
sociales à la biologie et à l’ingénierie. Leur force réside dans leur capacité à représenter les
relations entre entités, telles que les amitiés dans les réseaux sociaux ou les interactions
protéines dans les réseaux biologiques. En plus de leurs capacités de modélisation, les
graphes offrent un cadre mathématique qui sert à analyser, comprendre et faire des
prédictions à partir d’ensembles de données du monde réel. Ce manuscrit HDR présente
une partie de mes contributions de recherche dans le domaine de l’apprentissage, des
représentations des graphes et de ses applications à la science des réseaux. Il présente les
travaux menés après avoir rejoint CentraleSupélec, Université Paris-Saclay en 2017. La
première partie du manuscrit analyse les techniques de plonger les nœuds en préservant
la structure qui utilisent les marches aléatoires. La deuxième partie aborde le défi
du développement des modèles d’apprentissage de représentation pour les graphes
multicouches et hétérogènes, en soulignant les applications issues du domaine de la
biologie computationnelle. La troisième partie se focalise sur la conception de modèles des
reseaux de neurones en graphes expressifs et explicables. Finalement, la dernière partie
étudie l’application de l’apprentissage de la représentation de graphe afin d’aborder
les problèmes de l’apprentissage et de la maximisation de l’influence sociale dans des
réseaux complexes.

A B S T R A C T

Graphs, also known as networks, are widely used data structures for modeling complex
systems in various fields, from the social sciences to biology and engineering. The
strength lies in their ability to represent relationships between entities, such as friendships
in social networks or protein interactions in biological networks. In addition to their
modeling capabilities, graphs offer a mathematical framework to analyze, understand,
and make predictions from real-world datasets. This HDR manuscript presents part of my
research contributions to the field of graph representation learning and its applications in
network science, focusing on the work conducted after joining CentraleSupélec, Université
Paris-Saclay in 2017. The first part of the manuscript explores structure-preserving
node embedding techniques that leverage random walks. The second part addresses
the challenge of developing graph representation learning models for multilayer and
heterogeneous graphs, with a specific focus on applications arising from the domain of
computational biology. The third part delves into the design of expressive and explainable
graph neural network models. Finally, the last part investigates the application of graph
representation learning to tackle the well-studied problems of social influence learning
and maximization in complex networks.
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1
I N T R O D U C T I O N

G raphs, or networks, are omnipresent, as data from various disciplines can
naturally be represented using graph structures. Characteristic examples include
social, information, or biological networks [New18; MFD20]. Furthermore,

graphs not only serve as effective models for data representation but have proven
valuable in machine learning tasks. For instance, there could be an interest in predicting
the missing structure or the role of a group of genes in gene regulatory networks.
Likewise, tasks may involve identifying patients with similar phenotypes and symptoms
within a patient similarity network or uncovering influential users in social networks,
with applications ranging from misinformation detection to viral marketing. Therefore,
developing machine learning algorithms that integrate graph structure information into
the learning model is a pivotal task offering numerous interdisciplinary applications.

Consider, for instance, the case of friendship recommendations in social networks
(also known as the link prediction problem). Here, we need to obtain a meaningful
representation of individuals and their proximity to determine whether two unlinked
users are similar. However, their proximity is not fully captured by graph statistics (e.g.,
centrality criteria) or, more generally, other handcrafted features extracted from the graph.
Graph representation learning, a prominent recent paradigm, aims at finding vector
representations, also known as embeddings, at the node, subgraph, or graph level. It
allows for preserving the essential structure of the network and its various properties
in the lower dimensional space representations. The problem is typically expressed as
a learning task (unsupervised, semi-supervised, or self-supervised), where proximity
relationships in the learned space reflect the structure and properties of the original
graph [Ham20].

The graph representation learning framework gives rise to a class of flexible algo-
rithms that benefit from the advances in network science, graph mining and relational
learning, deep learning, signal processing, and optimization. These algorithms are
lately widespread in numerous fields and application domains, including recommender
systems, computational chemistry, bioinformatics, natural language processing, and
computer vision. Graph representation learning approaches are founded on a solid basis
to address challenging prediction tasks, combining the strengths of deep representation
learning with the relational inductive bias brought by graphs.

Developing algorithms that learn informative graph representations poses various
challenges. First, the models should capture the inherent complex structure of the
data involved. Real-world networks, such as those in biology and online social media
platforms, can be characterized by structure and dynamics at multiple resolutions. At
lower levels, nodes interact with each other, creating connections (i.e., edges) and sharing
common node attributes; meanwhile, at the mesoscale, nodes form modules that capture
latent communities; and, at a higher level, underlying processes control the way that
networks shape and evolve forming intricate node relationships with varying degrees
of importance and influence on the graph. Second, in our era of data deluge, we need
to handle massive-scale graphs consisting of millions of nodes and edges. Third, the
learning process often relies on limited training data, while it should further ensure
model generalization capabilities. Fourth, the models should allow for generating human-
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2 introduction

interpretable predictions, increasing practitioners’ trust. Finally, a remaining challenge is
leveraging the representations to deal with real-life applications in emerging domains.

1.1 overview of contributions

The work presented in this HDR manuscript focuses on a selection of my research
contributions in graph representation learning to address the aforementioned challenges.
The research deals with the design of expressive and scalable models and their practical
application in interdisciplinary network science tasks, namely identifying influential
spreaders in complex networks and analyzing network data in bioinformatics. In the rest
of this introduction, I present an overview of the research contributions, summarized
schematically in Fig. 1.1.

1.1.1 Previous Research

Before presenting the works covered in this manuscript, I will briefly overview my
previous research contributions during my Ph.D. and postdoctoral periods (2012–2017).
My doctoral thesis centered around the concept of core decomposition on graphs, a
well-studied topic in graph mining and network science [Mal15]. Informally, the k-core
decomposition is a threshold-based hierarchical decomposition of a graph into nested
subgraphs. We explored methodologies that utilized the core decomposition and its
variants to study the engagement dynamics of social graphs [MV13b; MV15], detect
influential spreaders [MRV16], and categorize documents in a graph-based approach to
text analytics [MS15; SMV18]. Additional lines of work in this direction conducted during
and after my Ph.D. include frameworks for core-driven graph clustering [Gia+14; Gia+16]
and keyword extraction [TMV16; Tix+19]. These contributions, along with several other
works conducted by the research community, resulted in a survey article [Mal+20] and
various tutorials [MPV16] dedicated to the topic of k-core decomposition. Lastly, my work
has explored various aspects of the community detection problem [MV13a; MMV17].
These works further motivated part of the methodological contributions presented in this
manuscript.

1.1.2 Structure-aware Random Walk Node Embeddings

In the early stages of graph representation learning, random walk-based embedding
models gained considerable attention, mainly due to the flexible way of determining node
proximity in a stochastic manner. Two of the most widely-used random walk models,
namely DeepWalk [PARS14] and Node2Vec [GL16], first sample a set of truncated
random walks for each node on the graph to define center-context node relationships;
the embeddings are then optimized to maximize the likelihood of node co-occurrences
within the random walks. In collaboration primarily with my Ph.D. student Abdulkadir
Çelikkanat, we have proposed various expressive and scalable random walk embedding
models. These contributions are discussed in Chapter 2.

First, we have investigated how to learn expressive node embeddings by leveraging the
underlying graph’s community structure. We have proposed Topical Node Embeddings
(TNE), a framework in which node embeddings are enhanced with topic (or community)
information towards learning topic-aware node representations—leading to performance
improvements on downstream tasks [ÇM21].
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– TNE: community-aware
embeddings [ÇM21]

– EFGE: exponential family
embeddings [ÇM20]

– KernelNE: kernel node
embeddings [ÇM19; ÇSM23]

– NodeSig: scalable
embeddings [ÇMP22]

– BraneExp: multilayer
random walk embeddings
[Jag+21b]

– BraneMF: joint matrix
factorization embeddings
[Jag+22b; Jag+22a]

– MDMF: heterogeneous
embeddings for link
prediction [Liu+22a]

– SJLR: over-squashing and
over-smoothing in deep
GNNs [Gir+23]

– HoscPool: clustering and
pooling for GNNs [DM22]

– GraphSVX: explainability in
GNNs [DM21]

– IMINFECTOR: learning
influence embeddings
[PMV20; PMV22]

– Glie: influence maximization
with GNNs [Pan+23]

Chapter 2
Random walk node embeddings

Chapter 3
Multilayer graph embeddings

Chapter 4
Graph neural networks

Chapter 5
Influence learning and maximization

Figure 1.1: Illustration of the work presented in this manuscript and dependencies between the
different chapters.

Subsequently, to improve model flexibility, we have employed expressive conditional
probability models to relate nodes within random walk sequences. We have introduced
Exponential Family Graph Embeddings (EFGE), a family of models that generalize
random walk representation learning techniques to exponential family conditional distri-
butions [ÇM20].

Third, we have studied methodologies that combine matrix factorization with random
walks for graph representation learning. In collaboration with Yanning Shen (UC Irvine),
we have introduced a kernelized weighted matrix factorization model called Kernel Node
Embeddings (KernelNE). The model has further been extended to a multiple kernel
learning formulation [ÇM19; ÇSM23].

Lastly, we have focused on the efficiency aspects of random walk node embeddings.
Sampling random walks and maximizing the likelihood of node co-occurrences could be
a computational bottleneck in analyzing large-scale graphs. To address this challenge, in
collaboration with Apostolos N. Papadopoulos (Aristotle Univ. of Thessaloniki), we have
introduced NodeSig that combines random walk diffusion probabilities with random
projection hashing to compute binary node embeddings [ÇMP22].

1.1.3 Multilayer Graph Embeddings

A multilayer graph is an elegant model in graph theory to represent networks with
multiple types of relationships between nodes [Boc+14; Kiv+14]. Motivated by data
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integration problems in computational biology, we have investigated methodologies to
learn embeddings on multilayer graphs. This line of work is presented in Chapter 3.

In collaboration with my Ph.D. student Surabhi Jagtap and researchers from IFP
Energies nouvelles (a research institution specializing in the energy and environmental
sectors), we have introduced representation learning models that rely on random walks.
Our first such proposal, BraneExp, combines a biased random walk sampling procedure
with the models presented in Chapter 2 [Jag+21b]. Furthermore, to avoid explicitly
sampling random walk sequences from a multilayer graph – a time-consuming step that
requires extensive tuning – we have leveraged random walk diffusion probabilities. This
has resulted in the formulation of BraneMF, a joint matrix factorization framework for
multilayer graphs [Jag+22b; Jag+22a]. The performance of the models has been evaluated
on various downstream prediction tasks for biological data analysis.

We have also explored methods for learning embeddings on multi-relational hetero-
geneous graphs, particularly in the context of drug-target interaction (DTI) prediction
in drug development. In collaboration with Bin Liu, Dimitrios Papadopoulos, Grigo-
rios Tsoumakas, and Apostolos N. Papadopoulos (Aristotle Univ. of Thessaloniki), we
have introduced MDMF, a supervised link prediction framework capable of leveraging
heterogeneous information in the context of a multilayer graph [Liu+22a].

1.1.4 Topics in Graph Neural Networks

Graph Neural Networks (GNNs) have recently emerged as an attempt to extend neural
networks and the deep learning paradigm to graph data [Ham20; Bro+21]. We have
delved into various aspects of GNNs, ranging from design issues to explainability. These
contributions are presented in Chapter 4.

Most current GNN architectures suffer from performance degradation due to the
over-smoothing and over-squashing effects when multiple layers are stacked to form
deep models. In collaboration with Jhony H. Giraldo, a visiting Ph.D. student from
La Rochelle Université (currently Assistant Professor at Télécom Paris), Konstantinos
Skianis (BLUAI), and Thierry Bouwmans (La Rochelle Université), we have identified a
fundamental trade-off between over-smoothing and over-squashing stemming from the
topological properties of the graph. We have also presented SJLR, an algorithm based on
graph curvature designed to alleviate both phenomena [Gir+23].

The second aspect concerns the design of pooling operators for GNNs used to compute
graph-level representations (e.g., for graph classification tasks). Given that global pooling
discards graph structure during the computation of its final representation, our focus
has been on developing a structure-aware graph pooling model. In this direction, with
my Ph.D. student Alexandre Duval, we have proposed HoscPool, a clustering-based
pooling operator based on a motif spectral clustering formulation [DM22].

Lastly, we have considered the problem of explainability in GNNs toward allowing end-
users to understand model predictions. With Alexandre, we have proposed GraphSVX,
an explainability model utilizing Shapley values to highlight the significance of both
node features and graph structure in the predictions [DM21].

1.1.5 Graph Representations for Influence Learning and Maximization

Modeling online information and influence spread constitute critical tasks in compu-
tational social science and beyond. To this end, detecting influential spreaders, i.e.,
individuals who can disseminate information effectively, is crucial for increasing our un-
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derstanding of spreading processes within a networked system. Instances of the problem
can be found in the core of various practical applications, ranging from computational
epidemiology to media polarization and misinformation detection. The problem has
been studied extensively at its combinatorial optimization formulation, aka the influence
maximization problem, focusing primarily on improving time complexity [Li+18]. In
collaboration with my Ph.D. student George Panagopoulos, along with Nikolaos Tziortzi-
otis (Jellyfish) and Michalis Vazirgiannis (École Polytechnique), we have investigated
how to leverage graph representation learning in the tasks of influence learning and
optimization. This topic is covered in Chapter 5.

First, we have examined how real information cascades (e.g., retweets in X, formerly
Twitter) can be used for influence learning and maximization. We have introduced
IMINFECTOR (Influence Maximization with Influencer Vectors), a scalable model that
leverages embeddings learned from diffusion cascades, enabling model-independent
influence maximization [PMV20; PMV22].

Then, we have studied the more general case where ground truth information cascades
are unavailable. Specifically, we have proposed the Glie model (Graph Learning-based
Influence Estimation) that performs influence estimation relying on GNNs to encode the
structural position of the nodes in the graph. We have further shown how to use the
model for influence maximization [Pan+23].

structure of the manuscript. This manuscript is structured along four main
chapters (Chapter 2 to 5) devoted to the different lines of research presented above. To
keep the manuscript self-contained, each chapter begins with a concise presentation
of background concepts. Chapter 6 concludes the manuscript with perspectives about
ongoing and future research directions. Finally, Appendix A provides a complete list of
publications and Appendix B a curriculum vitae.





2L E A R N I N G G R A P H E M B E D D I N G S W I T H R A N D O M WA L K S

T his chapter describes our contributions to learning unsupervised node embed-
dings with random walks. After providing the necessary background material in
Sec. 2.1, we present four models addressing different challenges. The first model,

called TNE, aims to leverage the community structure of graphs in the learning process
(Sec. 2.2). Then, we discuss EFGE, a technique that improves the expressiveness of
random walk models with exponential family distributions (Sec. 2.3). The third approach,
KernelNE, investigates how kernel methods can be used to augment the predictive
capacity of random walk matrix factorization (Sec. 2.4). Finally, we present NodeSig, a
random walk model that computes binary embedding balancing scalability and efficiency
(Sec. 2.5). A discussion of the contributions and perspectives is given in Sec. 2.6. The
chapter is based on the following publications:

• Abdulkadir Çelikkanat and Fragkiskos D. Malliaros. Topic-Aware Latent Models
for Representation Learning on Networks. Pattern Recognition Letters 144 (2021),
pp. 89–96.

• Abdulkadir Çelikkanat and Fragkiskos D. Malliaros. Exponential Family Graph
Embeddings. In AAAI,. 2020, pp. 3357–3364.

• Abdulkadir Çelikkanat, Yanning Shen, and Fragkiskos D. Malliaros. Multiple
Kernel Representation Learning on Networks. IEEE Trans. Knowl. Data Eng. 35:6
(2023), pp. 6113–6125.

• Abdulkadir Çelikkanat and Fragkiskos D. Malliaros. Kernel Node Embeddings. In
GlobalSIP,. 2019, pp. 1–5.

• Abdulkadir Çelikkanat, Fragkiskos D. Malliaros, and Apostolos N. Papadopoulos.
NodeSig: Binary Node Embeddings via Random Walk Diffusion. In ASONAM,.
2022, pp. 68–75.

2.1 background

A graph G = (V , E) consists of a set of nodes (or vertices) V and a set of edges (or
links) E ⊆ V × V which connect node pairs. In this chapter, our focus lies on learning
unsupervised node embeddings that preserve the structure of the graph and its various
properties in low-dimensional space representations. The problem is typically formulated
as an optimization task, where proximity relationships in the learned space reflect the
structure and properties of the original graph [Ham20; HYL17b; MT21]. Let G = (V , E)
be a graph, (M, d) be a metric space, and S(u, v), ∀u, v ∈ V be a matrix encoding a graph-
based pairwise similarity function. We aim to find a mapping E : V → M minimizing the
following reconstruction loss:

∑
(v,u)∈D

ℓ
(

dM
(
E[u], E[v]

)
, S(u, v)

)
. (2.1)

7



8 learning graph embeddings with random walks

Here, ℓ(·, ·) represents a loss function that quantifies the difference between the estimated
similarity value dM

(
E[u], E[v]

)
and the actual similarity S(u, v). The set D refers to the

training set. Typically, the embedding space M is chosen to be Rd, i.e., E[v] ∈ Rd for each
node v ∈ V , d(·, ·) : Rd × Rd → R, and ℓ(·, ·) : R × R → R.

We can think of the above formulation as an encoder-decoder architecture. Specif-
ically, the encoder will map each node v ∈ V into a low-dimensional embedding, i.e.,
Encoder(v) = E[v] ∈ Rd. The decoder aims to reconstruct node similarities S(u, v) be-
tween nodes u and v based on the embeddings E[u] and E[v], i.e., Decoder(E[u], E[v]) ≈
S(u, v) [HYL17b]. In this chapter, we focus on node embedding techniques that involve
simple encoder functions, commonly known as shallow embeddings in the literature.
This formulation will help us later on to introduce more complex neural encoders in
Chapter 4.

A common way of formulating this structure-preserving embedding learning process
is through the lens of matrix factorization, aiming to obtain a low-dimensional represen-
tation of similarity matrix S. Some of the earliest approaches here include the widely
used IsoMap [TSL01] and Laplacian Eigenmaps [BN01] algorithms. More recently,
matrix factorization node embedding models have been introduced, targeting both first-
and higher-order proximity information [Ahm+13; CLX15; Ou+16; WCZ16; Ros+20]. In
most cases, Singular Value Decomposition (SVD) is applied to obtain a low-rank approxi-
mation of the proximity matrix corresponding to the embeddings. Nevertheless, these
models suffer from high time complexity. Besides, they mainly rely on user-specified,
hand-designed node proximity criteria, which can also be challenging to compute on
large-scale graphs.

To improve flexibility, random walk-based methods have gained considerable attention,
mainly due to their ability to determine node proximity in a stochastic manner. These
methods aim at modeling center-context node relationships, maximizing the probability
of node co-occurrences in random walk sequences. Let w = (v1, . . . , vl , . . . , vL) ∈ VL be
a walk (i.e., sequence of nodes) of length L extracted from a graph, where each vl ∈ V
for all l ∈ {1, . . . ,L}. Considering a center node vl , the surrounding nodes within a
certain distance γ, vl−γ,. . ., vl−1, vl+1, . . ., vl+γ, correspond to its context. Then, node
embeddings can be learned by optimizing the following objective function:

FN(A, B) := argmax
Ω

∑
w∈W

L
∑
l=1

∑
−γ≤j≤γ

j ̸=0

log Pr(vl+j | vl ; Ω), (2.2)

where Ω = (A, B) is the model parameters that we would like to learn, W is the set of
random walks w = (v1, . . . , vl , . . . , vL) ∈ VL of length L, and γ refers to the window
size. Following suit of the SkipGram model for word embeddings [Mik+13a; Mik+13b],
A[v] and B[v] correspond to the embedding vectors when v is considered as the context
and center node, respectively. Typically, the softmax function is used for the probability
measure in (2.2) defined as

Pr(vl+j|vl) :=
exp

(
A[vl+j]

⊤ · B[vl ]
)

∑v∈V exp (A[v]⊤ · B[vl ])
. (2.3)

This idea was first introduced in the DeepWalk model which considers uniform random
walks [PARS14]. It was then extended by Node2Vec to biased random walks, enabling
the sampling of nodes that interpolate between breadth-first search and depth-first search
explorations. Regarding model optimization, hierarchical softmax or negative sampling
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are employed to deal with the computational challenges imposed while evaluating the
denominator of (2.3).

2.2 community-aware node embeddings

This section is based on material from a journal article [ÇM21] co-authored with
Abdulkadir Çelikkanat, published in Pattern Recognition Letters.

While random walk-based embedding models outlined in Sec. 2.1 effectively capture local
connectivity patterns, they often fall short in conveying comprehensive information about
the global structural properties of the graph. Specifically, real-world networks exhibit
inherent clustering or community structure, which can be harnessed to enhance the
predictive capabilities of node embeddings. One can interpret such structural information
based on an analogy to the concept of topics in a collection of documents. Similar to
how word embeddings can be augmented with topic-based information [Liu+15], our
objective here is to strengthen node embeddings by incorporating knowledge about the
latent community structure of the graph. This can be achieved through a process akin to
topic modeling.

In this section, we present a framework in which node embeddings are enhanced with
topic (or community) information towards learning topic-aware embeddings—something
that leads to further improvements in the performance of downstream tasks. Specifically,
we first show how existing latent space discovery models, such as community detection
and topic models, can be incorporated into the node representation learning process.
Then, we introduce Topical Node Embeddings (TNE), a model that follows a two-step
approach: firstly, learning community embeddings from the graph and subsequently
utilizing them to enhance the node representations derived from random walk methods.
We investigate different variations of this model and analyze their properties.

2.2.1 Learning Topic Representations

Complex networks, such as those arising from social or biological settings, consist of
latent clusters of different sizes in which the nodes are more likely to be connected to
each other [GN02; For10; MV13a]. Our main goal here is to use the latent clusters of a
network to obtain enriched representations. This can be achieved by enhancing node
embedding vectors with topic representations. By replacing a node vi with its community
label zi in a random walk, we learn community embeddings by predicting the nodes in the
context of a community label. More formally, we can define our objective function to
learn topic embeddings as follows:

FT(Ã, B̃) := argmax
Ω̃=(Ã,B̃)

∑
w∈W

L
∑
l=1

∑
−γ≤j≤γ

j ̸=0

log Pr(vl+j | zl ; Ω̃). (2.4)

By maximizing the log-probability of (2.4), we obtain the embedding vectors correspond-
ing to each community label zi ∈ {1, . . . ,K}, where K indicates the number of latent
communities. In this work, we mainly use two approaches to detect latent communities.
The first one is based on a novel combination of generative statistical models accompa-
nied by random walks, while the second one relies on traditional community detection
algorithms that leverage the inherent structure of the graph.



10 learning graph embeddings with random walks

random walks and generative graph models . Most real-world networks can
be expressed as a combination of nested or overlapping communities [Pal+05]. Therefore,
when a random walk is sampled, it not only visits neighboring nodes but also traverses
communities in the network (see Fig. 2.1 (b)). In that regard, we assume that each
random walk can be represented as random mixtures over latent communities, and each
community can be characterized by a distribution over nodes. In other words, we can
write the following generative model for each walk over the network:

1. For each k ∈ {1, . . . ,K}
• ϕk ∼ Dirichlet(b0)

2. For each walk w = (v1, . . . , vl , . . . , vL)

• θw ∼ Dirichlet(a0)

• For each vertex vl ∈ w

– zi ∼ Multinomial(θw)

– vl ∼ Multinomial(ϕzl )

Here, N is the number of walks and L is
the walk length. Considering each ran-
dom walk as a document and the col-
lection of random walks as a corpus, it
can be seen that the statistical process de-
fined above corresponds to the well-known
Latent Dirichlet Allocation (LDA) model
[BNJ03]. We will refer to this model as
Glda. As we show in Lemma 2.1, the rela-
tive frequency of the occurrences of a node
in the generated walks is proportional to
its degree in the network for a large num-
ber of walks or walk lengths. This property was first empirically demonstrated in the
work by Perozzi et al. [PARS14], allowing SkipGram-based models to be applied to
real-world graphs. Here, we provide a formal argument for this empirical observation.

Lemma 2.1. Let G = (V , E) be a connected graph, and {Xl}l≥1 be a Markov chain with state
space V = {1, . . . , N} and transition matrix P, where P(v, u) is defined as 1/deg(v) for each
edge (v, u) ∈ E and 0 otherwise. If the Markov chain is aperiodic, then

lim
L→∞

1
L

E
[
O(v)

L
]
=

deg(v)
2|E | ,

where O(v)
L is a random variable representing the number of occurrences of the node v in a

random walk of length L.

A variant of the Glda model has also been introduced to incorporate the hidden state
of the current node when determining the next vertex to be visited. This model, denoted
by Ghmm, is based on the Hidden Markov Model (HMM) with symmetric Dirichlet
priors over transition and emission distributions.

graph structure-based modeling . The previous models have relied on the
generated random walks to detect each node’s community (or topic) assignment in the
given node sequence. To increase the flexibility of the TNE framework, we utilize two
additional community detection models, which directly target extracting communities
of nodes from a given graph. The first model corresponds to the well-known Louvain
algorithm that extracts communities based on modularity maximization [Blo+08], while
the second one to the BigClam model for detecting overlapping communities [YL13].

2.2.2 Topical Nodel Embeddings

This section outlines the Topical Node Embedding (TNE) model, which has been proposed
to learn topic-aware node representations. Figure 2.1 gives an overview of the model. The
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Figure 2.1: Schematic representation of the TNE model. The final representations are learned by
combining node and topic embeddings. The representation of a node is learned using
random walks performed over the network; its topic representation is similarly learned
by assigning a topic/community label based either on random walks (TNE-Glda,
TNE-Ghmm) or network structure-based approaches (TNE-Louvain, TNE-BigClam).

objective of TNE is to enhance node embeddings using information about the underlying
topics of the graph obtained by the models described in Sec. 2.2.1. This can be achieved
by learning node and topic embedding vectors independently of each other, jointly
maximizing the objectives defined in Equations (2.2) and (2.4):

argmax
Ω,Ω̃

∑
w∈W

L
∑
l=1

∑
−γ≤j≤γ

j ̸=0

[
log Pr

(
vl+j|vl ; Ω

)
︸ ︷︷ ︸

node embeddings

+ log Pr
(
vl+j|zl ; Ω̃

)
︸ ︷︷ ︸
community embeddings

]
.

After obtaining the node and topic representations, our final step is to efficiently in-
corporate these two feature vectors, B[v] and B̃[z] of node v and community label z
respectively, to obtain the final topic-enhanced node embedding. For this purpose, we
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Algorithm 2.1 Topical Node Embeddings (TNE)
Input: Graph G = (V , E); number of walks, N ; walk length, L; window size, γ; number

of communities, K; topic representation learning method, T; node embedding size,
dn; community embedding size, dt

Output: Embedding vectors of length dn + dt
1: Perform N random walks of length L for each node
2: Learn node embeddings by optimizing (2.2)
3: Learn topic embeddings by optimizing (2.4), using any of the models T of Sec. 2.2.1
4: Concatenate node and topic embeddings with (2.5)

concatenate node embedding vector B[v] with the expected topic vector with respect to
the distribution Pr(·|v). Our strategy can be formulated as follows:

B[v] ⊕ ∑
k∈{1,...,K}

Pr(k|v) · B̃[k], (2.5)

where ⊕ indicates the concatenation operation. We refer to the final vector obtained after
concatenating the node and topic feature vectors as topical node embedding. Algorithm 2.1
provides the pseudocode of the proposed TNE model. Depending on the method used
to learn topical representations, we will refer to the corresponding instances of TNE as
TNE-Glda, TNE-Ghmm, TNE-Louvain, and TNE-BigClam. The different instances of
the TNE model are empirically evaluated in Sec. 2.4.2, along with the models presented
in the following two sections.

2.3 exponential family node embeddings

This section is based on material from an article co-authored with Abdulkadir Çelikkanat
published in the AAAI Conference on Artificial Intelligence (AAAI) [ÇM20].

As mentioned in Sec. 2.1, random walk-based approaches commonly generate sets of
node sequences from the input graph. The key distinction between these methods lies
in their approach to generating (i.e., sampling) sequences. They create center-context
node pairs by examining the occurrences of nodes within a certain distance of each
other within the walks. Subsequently, popular NLP models like the SkipGram model
[Mik+13b] are employed to learn latent node embeddings.

Nevertheless, Skip-Gram models the conditional distribution of nodes within a random
walk using the softmax function, which can limit its ability to capture more complex
interaction patterns between nodes that co-occur in a random walk. Acknowledging
this limitation of existing random walk-based methods, we argue that employing more
expressive conditional probability models to relate nodes within a random walk sequence
could yield more informative latent node representations.

In this section, we leverage exponential family distribution models to capture node inter-
actions in random walks. Exponential families offer a mathematically convenient and
flexible parametric set of probability distributions to represent relationships between
entities. Specifically, we introduce the Exponential Family Graph Embeddings (EFGE) model,
which extends random walk techniques to exponential family conditional distributions.
We investigate three specific instances of the EFGE model, corresponding to well-known
exponential family distributions: Bernoulli, Poisson, and Normal. Furthermore, we ana-
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lyze the objective function of the proposed parametric models, providing connections to
well-known unsupervised graph learning models under appropriate parameter settings.

2.3.1 Overview of Exponential Families

Before presenting the proposed model, let us briefly introduce exponential family dis-
tributions, a parametric set of probability distributions that include, among others, the
Gaussian, Bernoulli, and Poisson distributions. A class of probability distributions is re-
ferred to as exponential family distributions when they can be expressed in the following
form:

p(y) = h(y) exp
(

ηT(y)− A(η)
)

, (2.6)

where h is the base measure, η are the natural parameters, T is the sufficient statistic of the
distribution, and A(η) is the log-normalizer or log-partition function [And70]. Through
the selection of distinct base measures and sufficient statistics, we can obtain different
probability distributions. For instance, the base measure and sufficient statistic of the
Bernoulli distribution are h(y) = 1 and T(y) = y, respectively, while for the Poisson
distribution we have h(y) = 1/y! and T(y) = y.

As mentioned above, exponential families contain a wide range of commonly used
distributions, providing a general class of models by re-parameterizing distributions in
the natural parameters η. That way, we will use the natural parameter η to design a set
of node embedding models, defining ηv,u as the product of context and center vectors in
the following way:

ηv,u := f
(

A[v]⊤ · B[u]
)

,

where f is called the link function. As we will present shortly in the following section, we
have many alternative options for the form of the link function f (·).

2.3.2 Learning Node Embeddings with Exponential Families

This section introduces the proposed family of EFGE models. The main idea is to leverage
the expressive capability of exponential family distributions to condition context nodes
based on the center node of interest. First, we will describe the formulation of the general
objective function of the EFGE model, and then we will present particular instances of
the model.

Let W denote a collection of node sequences generated using a random walk strategy
applied to a given graph G. Based on that, we can define a generic objective function to
learn node embeddings in the following way:

F (A, B) := argmax
Ω

∑
w∈W

L
∑
l=1

∑
v∈V

log p
(

y(l)
(w,v); Ω

)
, (2.7)

where y(l)
(w,v) is the observed value indicating the relationship between the center wl

and context node v. Note that the objective function in (2.7) is quite similar to the one
of the SkipGram model presented in (2.2), except that we also include nodes that are
not belonging to context sets. Rather than limiting ourselves to the sigmoid or softmax
functions for modeling the probability in the objective function of (2.7), we introduce a
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DEEPWALK

EFGE-BERN

EFGE-POIS

EFGE-NORM

Figure 2.2: Visualization of the Dolphins network composed by two communities and the corre-
sponding embeddings for d = 2.

generalization that assumes each y(l)w,v follows an exponential family distribution. That
way, the objective function used to learn node embedding vectors Ω = (A, B) can be
rewritten as follows:

argmax
Ω

∑
w∈W

L
∑
l=1

∑
v∈V

log h(y(l)w,v) + ηwl ,vT(y(l)w,v)− A(ηwl ,v). (2.8)

We have examined three instances of the EFGE model that represent well-known
exponential family distributions. Specifically, we employ the Bernoulli, Poisson, and
Normal distributions leading to the corresponding EFGE-Bern, EFGE-Pois, and EFGE-
Norm models. For illustration purposes, Fig. 2.2 depicts the Dolphins network composed
by two communities and the embeddings in two dimensions as computed by different
models. As we can see, in this specific toy example, the proposed EFGE-Bern and EFGE-
Pois models learn representations that can distinguish nodes based on their communities.
In the following sections, we analyze the properties of these models.

the efge-bern model . Our first model is EFGE-Bern, in which node occurrences
within the context set of another mode follow a Bernoulli distribution. Let Y(l)

w,v be
a random variable following a Bernoulli distribution which is equal to 1 if node v
appears in the context set C(l)

γ (w) of node wl . We can express it as Y(l)
(w,v) = X(l−γ)

(w,v) ∨
· · · ∨X(l−1)

(w,v) ∨ X(l+1)
(w,v) ∨ · · · ∨X(l+γ)

(w,v) , where each X(l+j)
(w,v) indicates the appearance of v at

the specific position l + j (−γ ≤ j ̸= 0 ≤ γ) in the walk w ∈ W . Here, we assume
that X(l+j)

(w,v)’s are independent variables. We can express the objective function of the
EFGE-Bern model, FB(A, B), by splitting (2.8) into two parts with respect to the values
of Y(w,v) and X(l+j)

(w,v):

FB(A, B)= argmax
Ω

∑
w∈W

L
∑
l=1

(
∑

v∈C(l)
γ (w)

log p
(

y(l)
(w,v)

)
+ ∑

v ̸∈C(l)
γ (w)

log p
(

y(l)
(w,v)

))

= argmax
Ω

∑
w∈W

L
∑
l=1

∑
−γ≤j≤γ

j ̸=0

(
log p

(
x(l+j)
(w,wl+j)

)
+ ∑

v∈V
v ̸=w(l+j)

log p
(

x(l+j)
(w,v)

))
. (2.9)
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Note that the exponential form of a Bernoulli distribution with a parameter π is equal to
exp (ηx − A(η)), where the log-normalizer A(η) is log(1 + exp(η)) and the parameter π
is the sigmoid function σ(η) = 1/

(
1 − exp(−η)). Therefore, we can rewrite the objective

function FB(A, B) as follows:

FB(A, B) = argmax
Ω

∑
w∈W

L
∑
l=1

∑
−γ≤j≤γ

j ̸=0

(
log σ

(
η(wl ,wl+j)

)
+ ∑

v∈V
v ̸=wl+j

log σ
(
− η(wl ,v)

))
. (2.10)

We choose the identity map for the link function f (·), so ηwl ,v directly becomes equal
to the product of vectors A[v] and B[wl ]. Finally, in Lemma 2.2, we show that the log-
likelihood FB(A, B) of the EFGE-Bern model in fact converges to the objective function
of negative sampling given in (2.11).

Lemma 2.2. The log-likelihood function LB(A, B) can be approximated by

∑
w∈W

L
∑
l=1

∑
−γ≤j≤γ

j ̸=0

(
log p

(
x(l+j)
(w,wl+j)

)
+

k

∑
r=1

E
s∼q−

[
log p

(
x(l+j)
(w,s)

)])
(2.11)

for large values of k.

the efge-pois model . This model employs the Poisson distribution to capture the
relationship between context and center nodes in a random walk sequence. Let Y(l)

(w,v) be a
random variable indicating the number of occurrences of node v in the context of wl . We
assume that Y(l)

(w,v) follows a Poisson distribution, with the mean value λ̃(wl ,v) being the
number of appearances of node v in the context of wl within the window size γ. Similar
to the previous model, it can be expressed as Y(l)

(w,v) = X(l−γ)
(w,v) + · · · + X(l−1)

(w,v) + X(l+1)
(w,v) +

· · · + X(l+γ)
(w,v) , where X(l+j)

(w,v) ∼ Poisson
(

λ
(l+j)
(wl ,v)

)
for −γ ≤ j ̸= 0 ≤ γ. That way, we obtain

λ̃(wl ,v) = ∑γ
j=−γ λ

(l+j)
(wl ,v)

, since the sum of independent Poisson random variables is also
Poisson. By substituting the exponential form of the Poisson distribution into (2.7), we
can obtain the objective function of the model as:

FP(A, B) = argmax
Ω

∑
w∈W

L
∑
l=1

∑
v∈V

(
log h

(
y(l)
(w,v)

)
+
(

η̃(wl ,v)y
(l)
(w,v) − exp

(
η̃(wl ,v)

))
)

,

where the base measure h
(

y(l)
(w,v)

)
is equal to 1/y(l)

(w,v)!. Note that, the number of

occurrence y(l)
(w,v) is equal to 0 if v does not appear in the context of wl ∈ V . Using

a similar approach as in the EFGE-Bern model, the equation can be divided into two
parts based on the cases where y(w,v) > 0 and y(w,v) = 0. That way, we can apply negative
sampling (given in (2.11)) as follows:

∑
w∈W

L

∑
l=1

∑
−γ≤j≤γ

j ̸=0

((
− log

(
x(l+j)
(w,wl+j)

!
)
+ η(wl ,wl+j)x

(l+j)
(w,wl+j)

− exp
(
η(wl ,wl+j)

))
+
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k

∑
r=1

E
s∼q−

[
− exp

(
η(wl ,s)

)]
)

.

Note that, in the EFGE-Pois model, we do not specify any particular link function; thus,
the natural parameter is equal to the product of the embedding vectors.

the efge-norm model . If a node v appears more frequently in the context of wl
compared to other nodes, we can infer that v exhibits a higher level of interaction with
wl than the other nodes. Therefore, we consider each y(l)

(w,v) in this model as a weight
indicating the strength of the relationship between nodes wl and v. We assume that
X(l+j)
(w,v) ∼ N (1, σ2

+) if v ∈ C(l)
γ (w), and X(l+j)

(w,v) ∼ N (0, σ2
−) otherwise. Hence, we can

conclude that Y(l)
(w,v) ∼ N (µ̃, σ̃2) if we follow a similar assumption Y(l)

(w,v) = ∑γ
j=−γ X(l+j)

(w,v)
as in the previous model, where µ̃ is the number of occurrences of v in the context. The
formulation of the objective function of the EFGE-Norm model is given as follows:

FN(A, B) = ∑
w∈W

L
∑
l=1

∑
−γ≤j≤γ

j ̸=0

((
log h

(
x(l+j)
(w,wl+j)

)
+
(

x(l+j)
(w,wl+j)

η(wl ,wl+j)

σ+
−

η2
(wl ,wl+j)

2

))

+
k

∑
r=1

E
s∼q−

[
log h

(
x(l+j)
(w,s)

)
+
(

x(l+j)
(w,s)

η(wl ,s)

σ− −
η2
(wl ,s)

2

)])
,

where the base measure h(x) is exp(−x2/2σ2)/
√

2πσ for known variance. In this model,
we set the link function to f (x) = exp(−x), so η(wl ,v) is defined as exp(−A[v]⊤ · B[wl ]).

2.4 kernel node embeddings

This section is based on material from an article co-authored with Abdulkadir Çelikkanat
and Yanning Shen, published in IEEE Trans. Knowl. Data Eng. (TKDE) [ÇSM23]. A
preliminary version of this work was published in the IEEE Global Conference on Signal
and Information Processing (GlobalSIP) [ÇM19].

So far, we have introduced graph representation learning models that learn embed-
dings by maximizing the likelihood of nodes co-occurring within a set of random walk
sequences. As we briefly discussed in Sec. 2.1, another way of learning node represen-
tations is from a matrix factorization perspective. In this case, a matrix capturing node
similarities is factorized to learn a low-dimensional approximation using SVD [CLX15;
Ou+16; Wan+17]. Here, we study how to bring together the best of both worlds—random
walks and matrix factorization—through a kernel method.

Kernel functions have often been introduced along with popular learning algorithms,
such as PCA [SSM97], SVM [SS01], Spectral Clustering [DGK04], and Collaborative
Filtering [Liu+16a], to name a few. Traditional learning models often struggle to capture
the underlying substructures present in complex datasets due to their reliance on linear
techniques, which are inadequate for modeling nonlinear patterns in the data. Kernel
functions [HSS08], on the other hand, allow mapping nonlinearly separable points into
a (generally) higher dimensional feature space so that the inner product in the new
space can be computed without needing to compute the exact feature maps—bringing
further computational benefits. Additionally, to further reduce model bias, multiple
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kernel learning approaches have been proposed to learn optimal combinations of kernel
functions [GA11].

Kernel functions have also been utilized in the field of graph analysis. At the node
level, diffusion kernels and their applications [KL02] constitute notable instances. At
the graph level, graph kernels [Vis+10], such as the random walk and Weisfeiler-Lehman
kernels [KJM20], have mainly been utilized to measure the similarity between a pair
of graphs for applications such as graph classification. Relevant approaches have also
been proposed to leverage graph kernels for node classification in a supervised manner
[Tia+19] and in semi-supervised link prediction [BBS11].

In this section, we introduce KernelNE (Kernel Node Embeddings), an unsupervised
model that combines matrix factorization and random walks within a kernelized frame-
work for learning node embeddings. The potential benefit of this modeling approach
lies in its ability to harness and blend the elegant mathematical formulation provided by
matrix factorization with the expressive capabilities of random walks to capture a notion
of “stochastic” node similarity in an efficient way. More importantly, this formulation
enables leveraging kernel functions in the node embedding learning task. Due to the
inherent characteristics of matrix factorization models, node similarities can be perceived
as inner products of vectors lying in a latent space—which allows employing kernels to
interpret the embeddings in a higher dimensional feature space using non-linear maps.
To further improve expressiveness, we introduce MKernelNE, a multiple kernel learn-
ing formulation of the model. It extends the kernelized weighted matrix factorization
framework by learning a linear combination of a predefined set of kernels.

2.4.1 Kernel-based Representation Learning

The general objective function for our problem is defined as a weighted matrix factoriza-
tion [SJ03], expressed as follows:

F (A, B) := argmin
A,B

∥∥∥W ⊙ (M − AB⊤)
∥∥∥

2

F︸ ︷︷ ︸
Error term

+
λ

2
(
∥A∥2

F + ∥B∥2
F
)

︸ ︷︷ ︸
Regularization term, R(A, B)

. (2.12)

M ∈ R|V|×|V| represents the target matrix constructed from the desired properties of
a given graph, which is used to learn node embeddings A, B ∈ R|V|×d. Each element
W(v, u) of the weight matrix W ∈ R|V|×|V| captures the importance of the approximation
error between nodes v and u, and ⊙ indicates the Hadamard product. Depending on
the desired graph properties that we are interested in encoding, there are many possible
alternatives to choose matrix M; such include the number of common neighbors between
a pair of nodes, higher-order node proximity based on the Adamic-Adar or Katz indices
[Ou+16], as well leveraging multi-hop information [CLX15]. Here, we will design M as a
sparse binary matrix utilizing information of random walks over the network.

Consider a collection of walks of length L denoted as W , and let γ represent the
window size. Let M(v, u) be a binary value that equals 1 if node u appears in the context
of v in any random walk. Also, let F(v, u) be 2 · γ · #(v), where #(v) indicates the total
number of occurrences of node v in the generated walks. Setting each term W(v, u) as the
square root of F(v, u), the objective function in (2.12) can be expressed under a random
walk-based formulation as follows:

F (A, B) = argmin
A,B

∥∥∥
√

F ⊙
(
M − AB⊤)∥∥∥

2

F
+R(A, B)
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= argmin
A,B

∑
v∈V

∑
u∈V

F(v, u)
(

M(v, u)−
〈
A[u], B[v]

〉)2
+R(A, B)

= argmin
A,B

∑
w∈W

L
∑
l=1

γ

∑
j=−γ
j ̸=0

∑
u∈V

(
1{wl+j}(u)−

〈
A[u], B[wl ]

〉)2
+R(A, B). (2.13)

Matrix A in (2.13) represents the embedding vectors of nodes when they are treated as
centers. These embeddings are utilized for the downstream prediction tasks.

Before moving forward, let us consider the case where the entries of the weight matrix
W in (2.12) are equal to one. It is well-known that the low-rank matrix that minimizes the
unweighted sum-squared distance to matrix M is precisely determined by the leading
components of the SVD of M. Nevertheless, in our case, the weight matrix is not
uniform, making it challenging to directly apply SVD without the precise realization of
the target matrix. To overcome this limitation, we employ kernel functions to learn node
representations through matrix factorization.

Let (X, dX) be a metric space and H be a Hilbert space of real-valued functions defined
on X. A Hilbert space is called reproducing kernel Hilbert space (RKHS) if the point
evaluation map over H is a continuous linear functional [HSS08]. Furthermore, a feature
map is defined as a function Φ : X → H from the input space X into feature space H. Every
feature map defines a kernel K : X× X → R as follows:

K(x, y) := ⟨Φ(x), Φ(y)⟩ ∀(x, y) ∈ X2.

It can be seen that K(·, ·) is symmetric and positive definite due to the properties of an
inner product space.

A function g : X → R is induced by K, if there exists h ∈ H such that g = ⟨h, Φ(·)⟩ for a
feature vector Φ of kernel K. Note that, this is independent of the definition of the feature
map Φ and space H [Ste02]. Let Iκ := {g : X → R | ∃h ∈ H s.t. g = ⟨h, Φ(·)⟩} be the
set of induced functions by kernel K. Then, a continuous kernel K on a compact metric
space (X, dX) is universal, if the set Iκ is dense in the space of all continuous real-valued
functions C(X). In other words, for any function f ∈ C(X) and ϵ > 0, there exists gh ∈ Iκ

satisfying

∥ f − gh∥∞ ≤ ϵ,

where gh is defined as ⟨h, Φ(·)⟩ for some h ∈ H. In our approach, we consider universal
kernels, since we can always find h ∈ H satisfying |⟨h, ϕ(xi)⟩ − αi| ≤ ϵ for given
{x1, . . . , xN} ⊂ X, {α1, . . . , αN} ⊂ R and ϵ > 0 [Ste02]. If we choose αi’s as the entries of
a row of our target matrix M, then the elements h and ϕ(xi) indicate the corresponding
row vectors of A and B, respectively. Then, we can decompose the target matrix by
repeating the process for each row.

single kernel node embedding learning . Following the discussion above, we
can perform matrix factorization in the feature space using kernel functions. In particular,
we can transfer the inner product operation from the input space X to the feature space
H by reformulating (2.13) in the following manner:

FS := argmin
A,B

∑
w∈W

L
∑
l=1

γ

∑
j=−γ
j ̸=0

∑
u∈V

(
1{wl+j}(u)−

〈
Φ(A[u]), Φ(B[wl ])

〉)2
+R(A, B)
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= argmin
A,B

∑
w∈W

L
∑
l=1

γ

∑
j=−γ
j ̸=0

∑
u∈V

(
1{wl+j}(u)−K

(
A[u], B[wl ]

))2
+R(A, B). (2.14)

Specifically, we use the following two universal kernel functions:

KG(x, y) = exp

(
−∥x − y∥2

σ2

)
σ ∈ R

KS(x, y) =
1(

1 + ∥x − y∥2
)σ σ ∈ R+,

where KG and KS correspond to the Gaussian and Schoenberg kernels, respectively. We
will refer to the proposed kernel-based node embedding methodology as KernelNE (the
two different kernels will be denoted by Gauss and Sch).

Regarding model optimization, for each center node wl ∈ V in (2.14), we have to
compute the gradient for each u ∈ V , which is computationally intractable. However,
note that (2.14) can be divided into two parts concerning the values of 1{wl+j}(u)∈{0, 1}.
Thus, negative sampling can be employed, where for each center node wl , we sample k
negative instances s− from the noise distribution p− as follows:

FS := argmin
A,B

∑
w∈W

L
∑
l=1

γ

∑
j=−γ
j ̸=0

((
1−K

(
A[wl+j], B[wl ]

)2
+

k

∑
r=1

s−r ∼p−

K
(
A[s−r ],B[wl ]

)2
)
+R(A, B). (2.15)

multiple kernel node embedding learning . Selecting a proper kernel function
K(·, ·) and the corresponding parameters (e.g., the bandwidth of a Gaussian kernel) is
a critical task during the learning phase. However, relying on a single kernel function
might introduce inherent bias and restrict the performance of the model. The ability
to effectively employ multiple kernels can enhance model expressiveness, enabling the
capturing of diverse notions of similarity among embeddings [GA11]. Besides, learning
how to combine such kernels might further improve the performance of the underlying
model. In particular, given a set of base kernels {Ki}K

i=1, we aim to find an optimal way
to combine them, as follows:

Kc(x, y) = fc
(
{Ki(x, y)}K

i=1|c
)
,

where the combination function fc is parameterized on c ∈ RK that indicates kernel
weights. Due to the generality of the multiple kernel learning framework, fc can be
either a linear or nonlinear function. In our study, we have explored how to enhance the
proposed kernelized weighted matrix factorization model by linearly combining multiple
kernels. Let K1, . . . ,KK be a set of kernel functions satisfying the properties presented in
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a) Ground Truth Labels

b) NODE2VEC c) KERNELNE-SCH d) KERNELNE-GAUSS

f) MKERNELNE-SCH g) MKERNELNE-GAUSSe) NETMF

Figure 2.3: Visualization of embeddings of the Dolphins network. Node colors indicate community
labels computed by the Louvain algorithm.

the previous paragraph. Then, we can reformulate the objective function in the following
manner:

FM := argmin
A,B,c

∑
w∈W

L
∑
l=1

γ

∑
j=−γ
j ̸=0

( (
1 −

K

∑
i=1

ciKi(A[wl+j], B[wl ])
)2

+
k

∑
r=1

s−r ∼p−

( K

∑
i=1

ciKi(A[s−r ], B[wl ])
)2
)

+
λ

2
(
∥A∥2

F + ∥B∥2
F
)
+

β

2
∥c∥2

2, (2.16)

where c = [c1, . . . , cK]
⊤ ∈ RK. Here, we introduce an additional parameter cj representing

the contribution of the corresponding kernel Ki. β > 0 is a tradeoff parameter for the
regularization term, and similarly, the coefficients c1, . . . , cK are optimized by fixing the
remaining model parameters A and B. Equation (2.16) corresponds to the objective
function of the proposed multiple kernel learning model MKernelNE.

Finally, Fig. 2.3 shows a simple visualization of the embeddings of the Dolphins
network computed by different variants of KernelNE and MKernelNE as well as
two baseline models. We have used the Louvain algorithm [Blo+08] to detect the
communities in the network. As we can observe, different instances of MKernelNE learn
embeddings in which nodes of the different communities are better distributed in the
two-dimensional space. A clustering experiment on the embedding vectors has further
supported this observation, where the multiple kernel models achieve higher normalized
mutual information (NMI) scores.

2.4.2 Experimental Evaluation of TNE, EFGE, and (M)KernelNE

In this section, we briefly evaluate the performance of the models introduced in the pre-
vious sections, namely TNE, EFGE, and (M)KernelNE, in the tasks of node classification
and link prediction. We have decided to present jointly an overview of the empirical
analysis since all these models aim to learn node embeddings in an unsupervised manner.
A detailed list of experiments can be found in the corresponding articles for TNE [ÇM21],
EFGE [ÇM20], and (M)KernelNE [ÇSM23].
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datasets . We have conducted experiments on real-world datasets, including the
CiteSeer and Cora citation networks; the DBLP, AstroPh, HepTh collaboration networks; a
PPI (protein-protein interaction) network; a snapshot of the Facebook social graph; and
the Gnutella peer-to-peer file-sharing network [LK14].

baseline models . In our analysis, we have considered several baseline models,
including DeepWalk [PARS14], Node2Vec [GL16], LINE [Tan+15], VERSE [Tsi+18],
HOPE [Ou+16], NetMF [Qiu+18b], GEMSEC [Roz+19], and M-MNF [Wan+17]. We apply
the same parameter values for the random walk approaches, with 80 walks per node,
the walk length set to 10, and the window size set to 10. To keep the presentation short
and coherent, we only report the performance of the best-performing baseline and the
performance of the proposed models.

node classification. In the node classification task, a portion of the network’s
nodes (training set) is provided with labels, and the objective is to predict the labels of the
remaining nodes (test set). After learning the embedding vector for each node, we split
them into varying sizes of training and test sets, ranging from 1% up to 90%. We conduct
experiments using a one-vs-rest logistic regression classifier with L2 regularization
[Ped+11]. Here, we report the Micro-F1 scores for a subset of train and test splits (10%,
50%, and 90%), averaged over 50 runs for each representation learning method. As
we can observe in Tables 2.1, 2.2, and 2.3, different instances of the EFGE model are
quite competitive, especially for smaller training set sizes. Comparing the different
instances of the TNE model, as described in Sec. 2.2, we have observed an overall better
performance of the graph structure-based models TNE-Louvain and TNE-BigClam,
that can potentially be attributed to the way in which latent communities are extracted.
While TNE-Glda and TNE-Ghmm employ random walks for both node and topic
representations, it appears that these random walks may not capture the clustering
structure as effectively as algorithms specifically designed for this purpose, such as
BigClam and Louvain. We have further observed that employing multiple kernels
with MKernelNE frequently yields better performance than the single kernel model,
particularly for smaller training ratios.
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Citeseer 0.554 0.535 0.526 0.551 0.546 0.565 0.571 0.564 0.555 0.561 0.566 0.570
Cora 0.773 0.751 0.762 0.765 0.754 0.787 0.784 0.786 0.780 0.765 0.781 0.772

DBLP 0.623 0.617 0.619 0.625 0.625 0.639 0.640 0.640 0.617 0.627 0.636 0.631
PPI 0.164 0.173 0.172 0.178 0.180 0.179 0.184 0.185 0.148 0.195 0.195 0.194

∗Best-performing baseline. Citeseer: VERSE; Cora: NetMF; DBLP: Node2Vec; PPI: Node2Vec.
Boldface and underline: best and second-best performing model.

Table 2.1: Comparison of models for node classification with 10% training ratio.

link prediction. In the link prediction task, we remove half of the edges in the
network while preserving its connectivity. Subsequently, we learn node embeddings
on the residual network. The edges that have been removed are considered positive
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Citeseer 0.595 0.610 0.583 0.619 0.612 0.621 0.621 0.617 0.611 0.602 0.613 0.609
Cora 0.834 0.840 0.824 0.835 0.828 0.835 0.822 0.829 0.837 0.800 0.823 0.806

DBLP 0.639 0.634 0.635 0.642 0.641 0.655 0.655 0.656 0.633 0.637 0.648 0.641
PPI 0.226 0.233 0.227 0.226 0.229 0.227 0.231 0.234 0.192 0.244 0.242 0.241

∗Best-performing baseline. Citeseer: Node2Vec; Cora: NetMF; DBLP: Node2Vec; PPI: LINE.

Table 2.2: Comparison of models for node classification with 50% training ratio.
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Citeseer 0.620 0.618 0.594 0.638 0.624 0.626 0.627 0.625 0.620 0.609 0.620 0.615
Cora 0.845 0.856 0.834 0.850 0.851 0.847 0.834 0.837 0.851 0.812 0.833 0.818

DBLP 0.641 0.638 0.634 0.642 0.642 0.656 0.658 0.658 0.636 0.640 0.650 0.643
PPI 0.242 0.251 0.238 0.240 0.244 0.240 0.242 0.247 0.203 0.256 0.254 0.251

∗Best-performing baseline. Citeseer: VERSE; Cora: Node2Vec; DBLP: Node2Vec; PPI: LINE.

Table 2.3: Comparison of models for node classification with 90% training ratio.

samples for the testing set. The same number of node pairs that do not exist in the
original graph is sampled randomly to form the negative samples. Then, the entries of
the feature vector corresponding to each node pair (u, v) in the test set are computed
based on the element-wise operation |A(v, i)− A(u, i)|2, for each coordinate axis i of the
embedding vectors A(u, :) and A(v, :). In the experiments, we use logistic regression
with L2 regularization. Table 2.4 gives the Area Under Curve (AUC) scores for the
link prediction task. A general observation is that the two instances of the kernelized
matrix factorization framework, namely KernelNE and MKernelNE, demonstrate the
best performance across five datasets. However, it is worth noting that simpler baseline
models like DeepWalk and Node2Vec often exhibit comparable levels of accuracy.

running time . To compare the scalability of the different models, we have generated
Erdös-Rényi Gn,p graphs [New10] of varying sizes, ranging from 28 to 213 nodes. In the
generation of random graphs, we set the edge probabilities so that the expected node
degree is 10. Figure 2.4 shows the running time of the different variants of TNE and
KernelNE. Regarding TNE, as expected, TNE-Louvain is the most scalable instance due
to the efficient way of inferring the community structure. KernelNE and MKernelNE
are more time-efficient models, having running times comparable to DeepWalk and
Node2Vec. For instance, to compute the embeddings of an Erdös-Rényi graph with
105 nodes, DeepWalk requires 9, 525 seconds, Node2Vec 1, 684, while KernelNE and
MKernelNE 3, 845 and 6, 486 seconds, respectively. Besides, considering multiple kernels
does not significantly affect the scalability properties of the MKernelNE model. EFGE
also performs similarly, thus omitted from the comparison. Nevertheless, the models
studied so far cannot easily scale to large graphs mainly (i) because they have to sample
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TNE EFGE KernelNE MKernelNE
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Citeseer 0.828 0.809 0.793 0.809 0.795 0.820 0.829 0.783 0.807 0.882 0.850 0.863
Cora 0.781 0.775 0.806 0.780 0.767 0.753 0.777 0.782 0.774 0.823 0.802 0.810

DBLP 0.944 0.958 0.959 0.959 0.958 0.954 0.957 0.956 0.950 0.960 0.961 0.960
PPI 0.886 0.772 0.872 0.780 0.844 0.728 0.739 0.806 0.846 0.801 0.768 0.788

AstroPh 0.969 0.977 0.979 0.977 0.977 0.977 0.973 0.966 0.963 0.970 0.979 0.970
HepTh 0.896 0.903 0.908 0.905 0.904 0.899 0.902 0.907 0.899 0.917 0.917 0.916

Facebook 0.984 0.993 0.993 0.993 0.993 0.991 0.991 0.990 0.990 0.988 0.989 0.989
Gnutella 0.839 0.728 0.796 0.721 0.723 0.622 0.624 0.668 0.816 0.673 0.653 0.671

∗Best-performing baseline. Citeseer: DeepWalk; Cora: Node2Vec; DBLP: DeepWalk,
Node2Vec; PPI: M-NMF; AstroPh: LINE; HepTh: DeepWalk, Node2Vec; Facebook: Deep-
Walk; Gnutella: LINE.

Table 2.4: Comparison of models in the link prediction task.

a large set of random sequences explicitly; and (ii) due to the computationally expensive
optimization procedures required to learn embeddings [Zha+18; LGP21]. To overcome
these challenges, we introduce a scalable node embedding methodology in Sec. 2.5.
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Figure 2.4: Running time of different models on Erdös-Rényi random graphs of different sizes.

2.5 scalable node embeddings

This section is based on material from an article co-authored with Abdulkadir Çelikkanat
and Apostolos N. Papadopoulos, published in the IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining (ASONAM) [ÇMP22].

The vast majority of node embedding techniques, including those presented in Sections
2.2, 2.3, and 2.4 deal with learning-based models. In particular, they rely on matrix factor-
ization or random walk sampling to infer and optimize the proximities between nodes
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Figure 2.5: Comparison of models (running time vs. accuracy) on the PPI graph (|V| = 4K,
|E | = 40K).

[Ham20]. Such approaches have certain limitations. First, even if the Skip-Gram model
can be optimized relatively efficiently, a large number of random walks is required to be
explicitly sampled to ensure the effectiveness of the embeddings on downstream tasks. In
the case of matrix factorization [CLX15; Ou+16], the heavy reliance on dense node prox-
imity matrices poses computational and memory limitations, especially when dealing
with large-scale networks. Despite recent efforts to enhance the running time complexity
through dimensionality reduction [Zha+18; Che+19; Tsi+21], matrix sparsification tech-
niques [Qiu+19], and harnessing hierarchical graph representations [Che+18; Bho+20;
LGP21], there is often a trade-off between computational cost and the quality of embed-
dings. This dilemma presents a challenge for practitioners who must choose between
effectiveness and computational efficiency. In addition to the computational challenges in
model optimization, most of the proposed algorithms focus on learning low-dimensional
embeddings in Euclidean space. A few recent studies have introduced the concept of
learning discrete node representations [Lia+18; Yan+19], where the similarity between
embedding vectors is determined using the Hamming distance. These approaches are
built upon fast sketching techniques for scalable similarity search, primarily relying
on data-independent or data-dependent hashing [Wan+18]. While binary embeddings
speed up distance computations compared to metrics defined in the Euclidean space, the
learning procedures for such models often become computationally intensive, particularly
in the case of learning-to-hash models [Lia+18].

In this section, we will introduce NodeSig, a scalable model for computing binary node
embeddings based on stable random projections. NodeSig first leverages random walk
diffusions to estimate higher-order node proximity. Then, a properly defined sign random
projection hashing technique is applied to obtain binary node signatures in the Hamming
space, leading to an approximation of the chi similarity (χ) [PW10] between the proximity
vectors in the original space. Since these vectors are constructed based on the occurrence
frequencies of nodes within random walks, chi similarity emerges as a natural choice
of similarity metric, frequently used to compare histograms in various areas, including
natural language processing and computer vision. Every component of NodeSig has been
designed to ensure scalability without compromising the accuracy of downstream tasks.
In fact, NodeSig demonstrates comparable or even improved performance compared to
traditional models on these tasks. Figure 2.5 positions NodeSig regarding the accuracy
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and running time, providing a comparison to different models on the PPI network. As
we observe, NodeSig’s running time is comparable to that of models that focus solely
on scalability (e.g., NodeSketch [Yan+19], RandNE [Zha+18], LouvainNE [Bho+20]),
with improved accuracy even higher than Node2Vec [GL16], FREDE [Tsi+21], and HOPE
[Ou+16] in this dataset.

2.5.1 Binary Node Signatures via Random Walks

NodeSig (Node Signatures) relies on sign random projections of a properly designed
matrix that captures higher-order proximity between nodes. Firstly, we describe the
construction of this target matrix by utilizing random walk diffusion probabilities. Then,
we show how binary embeddings (or signatures) are obtained by incorporating non-linear
mapping through a simple sign function.

random walk diffusion for node proximity estimation. To capture higher-
order node proximities, we leverage uniform random walk diffusions. Let P denote
the transition matrix associated with the adjacency matrix of the graph, i.e., P(i, j) =
A(i, j)/ ∑j∈V A(i, j). We use a slightly modified version of the transition matrix by adding
a self-loop on each node in case it does not exist. Note that the probability of transitioning
to the next node in the random walk solely depends on the current node. As a result,
node vj can be reached from node vi by taking l steps with a probability of P(l)(i, j),
given the existence of a connecting path between them. For a given walk length L, we
define matrix M as

M := P + · · ·+ P(l) + · · ·+ P(L),

where P(l) indicates the l-order proximity matrix and each entry M(v, u) in fact specifies
the expectation of visiting u starting from node v within L steps. By introducing an
additional parameter β, Mβ can be rewritten as follows:

Mβ := βP + · · ·+ β(l)P(l) + · · ·+ β(L)P(L). (2.17)

By increasing the length of random walks, higher-order node proximity can be captured,
and the influence of each step in the walk can be controlled by the importance factor β ∈ R+.
In the following paragraph, we will demonstrate how matrix Mβ is properly exploited by
a random projection hashing strategy to compute binary node representations efficiently.

learning binary node embeddings . To compute node embeddings, we will
rely on random projections to represent data points in a lower dimensional space by
preserving the similarity in the original space [Vem01]. Here, we aim at encoding each
node into a Hamming space H

(
dH, {0, 1}d); we consider the normalized Hamming

distance dH as the distance metric [YCP15]. The benefit of binary representations is
twofold: first, they will allow us to perform efficient distance computation using bitwise
operations, and second, they reduce the required disk space to store the data.

Random projections are typically linear mappings; to obtain binary embeddings, non-
linear functions are required to perform the discretization step. A common approach
is to consider the signs of the values obtained by the Johnson-Lindenstrauss(JL) [JLS86]
transform. More formally, this can be expressed as

hW(x) := sign(x⊤W),



26 learning graph embeddings with random walks

where W is the projection matrix whose entries W(i, j) are independently drawn from a
normal distribution and sign(x)j is equal to 1 if xj > 0 and 0 otherwise. Goemans and
Williamson [GW95] first introduced this approach as a rounding scheme in approximation
algorithms, showing that the probability of obtaining different values for a single-bit
quantization is proportional to the angle between vectors. Specifically, for a given pair of
vectors x, y ∈ RN ,

Pr
[
hW(x)j ̸= hW(y)j

]
=

1
π

cos−1
(

x⊤y
∥x∥2∥y∥2

)
, (2.18)

where W(i, j) ∼ N (0, 1) for 1 ≤ i, j ≤ N. The main idea relies on sampling uniformly
distributed random hyperplanes in Rd. Each column of the projection matrix, in fact,
defines a hyperplane, and the arc between vectors x and y on the unit sphere is intersected
if hW(x)i and hW(y)i take different values. While the signs of random projections provide
an approximation of the angle between vectors in the original space, in our specific
settings, we aim to preserve a distance metric that can better capture the characteristics
of the input data Mβ. Note that the node proximity matrix Mβ consists of non-negative
elements computed using the occurrence frequencies of nodes within random walks.
Therefore, we focus on estimating distance metrics that compare histogram-type data by
properly redesigning the projection matrix. We employ stable random projections that
aim to preserve chi-square (χ2) similarity [LSH13]. Specifically, α-stable distributions, for
stability parameter 0 < α ≤ 2, with unit scale are used to sample the elements of the
projection matrix. Li et al. [LSH13] proposed the following upper bound

Pr
[
hW(x)j ̸= hW(y)j

]
≤ 1

π
cos−1ρα (2.19)

for non-negative vectors (xi ≥ 0, yi ≥ 0 for 1 ≤ i ≤ N), where ρα is defined as

ρα :=

(
∑i=1 xα/2

i yα/2
i√

∑i=1 xα
i
√

∑i=1 yα
i

)2/α

.

When α = 2, (2.19) reduces to the case of normal random projections given in (2.18), also
known as SimHash [Cha02]. For α = 1, corresponding to Cauchy random projections,
when the vectors are chosen from the ℓ1(R+) space (i.e., ∑i=1 xi = 1, ∑i=1 yi = 1), the
χ2 similarity defined as ρχ2 = ∑i=1(2xiyi)/(xi + yi) is always greater or equal to ρ1.
In our case, matrix Mβ is sparse enough for small random walk lengths composed of
non-negative entries. Thus, we consider designing the projection matrix W by sampling
its entries from the Cauchy distribution, preserving the chi-square similarity ρχ2 :

P
[
hW(x)j ̸= hW(y)j

]
≈ 1

π
cos−1ρχ2 ≤ 1

π
cos−1ρ1. (2.20)

To obtain the binary node embeddings E(v), ∀v ∈ V , we apply a sign-based discretization
of the random projections as follows:

E(v) :=
[
sign

(
Mβ(v, :) W(:, 1)

)
, . . . , sign

(
Mβ(v, :) W(:, d)

)]
.

Note also that we can overcome the exact realization of Mβ through local recursive
update rules. This brings a further computational advantage in NodeSig.
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2.5.2 Experimental Evaluation of NodeSig

baseline models . We have considered models targeting efficiency in addition to
widely-used node embedding baselines. NetSMF [Qiu+19] is a sparse matrix factor-
ization algorithm, modeling the pointwise mutual information of node co-occurrences.
FREDE [Tsi+21] is a matrix sketching-based approach, while RandNE [Zha+18] leverages
Gaussian random projections to deal with scalability. LouvainNE [Bho+20] constructs a
hierarchical subgraph structure, aggregating the node representations learned at each
level. Finally, NodeSketch [Yan+19] learns embeddings in the Hamming space, using
MinHash signatures. For all methods, we learn embedding vectors of size 128.

node classification. The experiments are conducted by training a one-vs-rest
SVM classifier with a pre-computed kernel designed by computing the similarities of
node embeddings [Ped+11]. Here, we consider two additional datasets; Blogcatalog is a
moderate-size social graph with 10K nodes and 340K edges, while Youtube is a larger
dataset with 1.1M nodes and 3M edges [LK14]. Tables 2.5, 2.6, and 2.7 report the Micro-F1
scores over ten runs for different training ratios. NodeSig, along with NodeSketch,
another data-independent hashing technique, achieve a competitive performance gain
compared to more traditional models like Node2Vec, especially for larger training ratios.

HOPE Node2Vec NetSMF FREDE LouvainNE RandNE NodeSketch NodeSig

BlogCat 0.305 0.341 0.360 0.354 0.047 0.316 0.305 0.358
Cora 0.687 0.764 0.763 0.777 0.686 0.583 0.648 0.750

DBLP 0.620 0.621 0.626 0.648 0.494 0.418 0.668 0.704
PPI 0.134 0.141 0.150 0.156 0.042 0.145 0.152 0.177

Youtube 0.342 – 0.392 – 0.248 0.335 0.439 0.455

Symbol ‘–’ indicates that the model could not run (memory or time constraints).

Table 2.5: Comparison of models for node classification with 10% training ratio.

HOPE Node2Vec NetSMF FREDE LouvainNE RandNE NodeSketch NodeSig

BlogCat 0.317 0.352 0.376 0.368 0.143 0.337 0.381 0.408
Cora 0.708 0.813 0.824 0.825 0.711 0.676 0.825 0.852

DBLP 0.632 0.632 0.644 0.661 0.496 0.437 0.847 0.843
PPI 0.151 0.161 0.170 0.174 0.054 0.161 0.227 0.236

Youtube 0.341 – 0.379 – 0.251 0.341 0.467 0.465

Table 2.6: Comparison of models for node classification with 50% training ratio.

HOPE Node2Vec NetSMF FREDE LouvainNE RandNE NodeSketch NodeSig

BlogCat 0.326 0.345 0.377 0.381 0.165 0.340 0.398 0.420
Cora 0.797 0.831 0.831 0.846 0.721 0.693 0.872 0.879

DBLP 0.631 0.631 0.647 0.661 0.499 0.438 0.903 0.893
PPI 0.146 0.138 0.163 0.157 0.056 0.145 0.243 0.246

Youtube 0.343 – 0.376 – 0.256 0.339 0.476 0.471

Table 2.7: Comparison of models for node classification with 90% training ratio.
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link prediction. The set-up of the link prediction task is similar to the one discussed
in Sec. 2.4.2. The features of the node pair samples are computed based on the similarities
between the embedding vectors depending on the algorithm we use to extract the
representations. Table 2.8 gives the Area Under Curve (AUC) scores for NodeSig and
the different baseline models. We can observe that NodeSig performs consistently well
across the different datasets, even though we learn binary node embeddings. As we will
demonstrate in the next paragraph, this helps to achieve a good performance-scalability
trade-off.

HOPE Node2Vec NetSMF FREDE LouvainNE RandNE NodeSketch NodeSig

BlogCat 0.517 0.595 0.691 0.709 0.565 0.608 0.703 0.822
Cora 0.665 0.748 0.709 0.760 0.684 0.508 0.590 0.737

DBLP 0.769 0.843 0.835 0.858 0.789 0.517 0.714 0.856
PPI 0.524 0.616 0.534 0.451 0.570 0.505 0.514 0.654

Youtube 0.514 0.533 0.542 0.460 0.528 0.502 0.510 0.537

Table 2.8: Comparison of models for the link prediction task.

time comparison. We have recorded the elapsed real (wall clock) time of all methods,
and the results are provided in Table 2.9. The Random network indicates the Gn,p Erdös-
Rényi random graph model with 105 nodes and p = 10−4. Compared to HOPE and
Node2Vec, NodeSig runs significantly faster. Although FREDE is a sketching-based
approach, we have observed that the computation of the Personalized PageRank (PPR)
matrix requires considerable time. Despite the fact that LouvainNE and RandNE
run faster compared to NodeSig, they underperform in both prediction tasks. This
experiment further supports the intuition about designing NodeSig as an expressive
model that balances accuracy and scalability.

Blogcat Cora DBLP PPI Youtube Random Speedup

HOPE 97.81 27.32 198.59 32.65 8470.33 1048.52 8.85×
Node2Vec 1400.44 18.32 161.24 72.16 – 716.07 2.55×

NetSMF 7.78 1.32 10.91 1.90 1624.94 236.30 1.69×
FREDE 1179.79 20.46 2612.84 140.43 – 22386.98 28.33×

LouvainNE 0.34 0.06 0.24 0.11 6.86 1.25 0.01×
RandNE 25.52 3.15 11.55 5.40 449.15 73.11 0.51×

NodeSketch 64.21 13.42 19.10 14.40 1563.00 101.16 1.59×
NodeSig 17.40 0.74 9.26 2.53 1047.53 38.11 1.00×

Table 2.9: Running time (in seconds) and average speedup.

2.6 discussion

In this chapter, we introduced four models to learn embeddings in an unsupervised
manner. With TNE, we take advantage of the underlying community structure of graphs,
leading to the concept of topical node embeddings. In our current study, we have explored
three instances of the model relying on different ways to infer the latent communities. In
practice, the size of the topic embedding vector learned by (2.4) is a critical factor that
affects the performance of TNE. EFGE offers the flexibility to model node co-occurrences
with exponential family distributions. We observed that the three different instances of
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the model perform similarly. KernelNE and MKernelNE explored a different direction
of leveraging random walks in a kernelized matrix factorization framework. Although
we did not observe any substantial difference between the single and multiple kernel
instances, the kernel models have demonstrated competitive performance overall. We
should emphasize the importance of systematically conducting parameter tuning to
ensure a fair comparison between random walk embedding models [Gur+22]. Finally,
NodeSig’s design, following concepts from hashing techniques, allowed to improve
scalability without sacrificing effectiveness on downstream tasks. In Chapter 3, we will
investigate approaches that aim to extend random walk models to multi-relational and
heterogeneous graphs.





3R E P R E S E N TAT I O N L E A R N I N G O N M U LT I L AY E R A N D
H E T E R O G E N E O U S G R A P H S

I n this chapter, we describe our contributions to representation learning on multilayer
and heterogeneous graphs. The chapter begins with an overview of the background
material in Sec. 3.1. Then, we introduce BraneExp, a technique that learns node

embeddings on multilayer graphs with random walks (Sec. 3.2). We continue by
presenting BraneMF, a model that utilizes random walk information in a joint matrix
factorization scheme for unsupervised representation learning (Sec. 3.3). For both these
models, we consider an evaluation pipeline related to omics data integration tasks in
computational biology. The third approach, MDMF, investigates how to infer missing
interactions in multilayer heterogeneous graphs, with applications to drug discovery and
the task of drug-target interaction prediction (Sec. 3.4). The chapter concludes with a
discussion on the three models in Sec. 3.5. The material presented here is based on the
following publications:

• Surabhi Jagtap, Abdulkadir Çelikkanat, Aurélie Pirayre, Frédérique Bidard, Lau-
rent Duval, and Fragkiskos D. Malliaros. Multiomics Data Integration for Gene
Regulatory Network Inference with Exponential Family Embeddings. In EUSIPCO,.
2021.

• Surabhi Jagtap, Abdulkadir Çelikkanat, Aurélie Pirayre, Frédérique Bidard, Laurent
Duval, and Fragkiskos D Malliaros. BraneMF: Integration of Biological Networks
for Functional Analysis of Proteins. Bioinformatics 38:24 (2022), pp. 5383–5389.

• Surabhi Jagtap, Aurélie Pirayre, Frédérique Bidard, Laurent Duval, and Fragkiskos
D. Malliaros. BRANEnet: Embedding Multilayer Networks for Omics Data Integra-
tion. BMC Bioinformatics 23:1 (2022), p. 429.

• Surabhi Jagtap, Aurélie Pirayre, Frédérique Bidard, Laurent Duval, and Fragkiskos
D. Malliaros. BRANet: Graph-based Integration of Multi-omics Data with Biological
a priori for Regulatory Network Inference. In CIBB,. 2021.

• Bin Liu, Dimitrios Papadopoulos, Fragkiskos D. Malliaros, Grigorios Tsoumakas,
and Apostolos N Papadopoulos. Multiple similarity drug–target interaction pre-
diction with random walks and matrix factorization. Briefings in Bioinformatics 23:5
(2022), bbac353.

3.1 background

Many real-world systems can be described by a set of interacting entities that encompass
multiple types of relationships. Such systems can be modeled using the concept of
multilayer graphs. A multilayer graph, also known as multiplex, multidimensional, or
multi-relational graph, is a complex network consisting of multiple interconnected layers
or graphs, where each layer represents different types of relationships or interactions
between the same or different sets of nodes [Boc+14; Kiv+14; Ber+13]. For instance,
in the case of social networks, each layer might correspond to different types of ties
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among individuals, while in a protein-protein interaction network, the layers can indicate
different ways that proteins or genes are associated with each other (e.g., co-expression
or database networks). A schematic representation and an example of a multilayer
graph are shown in Fig. 3.1 and 3.2. More formally, a multilayer graph with L layers
is defined as a set G = {G(l)}L

l=1 = {(Vl , El)}L
l=1 of graphs, where Vl = {v1, . . . , vnl} and

El = {e1l , . . . , eml} are the vertex and the undirected edges sets respectively. nl = |Vl |
and ml = |El | denote the number of nodes and edges for each layer l ∈ {1, . . . , L}. In
many cases, we assume that the layers share the same set of nodes, so Vj = Vl = V ,
and |Vj| = |Vl | = |V| for every 1 ≤ j < l ≤ L. We use A(l) to denote the adjacency
matrix of the associated graph layer G(l). In many practical applications, the graph can
be heterogeneous, where different types of entities interact with each other in various
ways. For example, in the case of drug discovery or drug repurposing problems, a graph
composed of heterogeneous entities, including drugs, targets (i.e., proteins), and other
biomarkers (e.g., diseases, side-effects), can be leveraged.

Our main goal in this chapter is to develop representation learning techniques for
multilayer graphs (homogeneous or heterogeneous) capable of effectively integrating
information encoded in the different input graph layers. To achieve that, we will combine
the ideas presented in Chapter 2 with linear algebra and matrix factorization techniques to
learn embeddings in an unsupervised or supervised manner. Other relevant approaches
in this direction concern tensor decomposition methods [Sid+17] and multiway data
analysis [YA09].

motivation of our work . Before introducing our contributions in the next sections,
it is important to briefly discuss the motivation behind developing embedding models
for multilayer graphs, which stems from the data integration problem in computational
biology [Zit+19; Yue+20]. The cellular system of a living organism is composed of
interacting bio-molecules, such as genes, proteins, and metabolites, associated with dif-
ferent biological mechanisms. The increase of omics technologies has favored generating
large-scale heterogeneous graph data and the consequent demand for simultaneously
using molecular and functional interaction networks: gene co-expression, protein–protein
interaction (PPI), genetic interaction, and metabolic networks. However, relying solely
on independent analysis of such data is constrained to identifying correlations, primar-
ily representing reactive processes rather than causative ones. On the contrary, these
datasets constitute rich sources of information at different molecular levels, and their
effective integration is essential to understanding cell functioning and their building
blocks (proteins) [Sub+20]. Fusing diverse omics data types is often expected to uncover
potential causative changes, such as gene regulation or signal transduction, that underlie
specific phenotypes or treatment targets. Therefore, it is necessary to learn informative
representations (i.e., embeddings) of bio-molecules that encode interactions across dif-
ferent data sources, which are not fully captured by features extracted directly from
individual modalities. This will further enable us to understand biological mechanisms,
for instance, gene regulation, protein function prediction, or drug–target identification
from a machine learning perspective [Nel+19; Yue+20].
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2.3 exponential family node embeddings 9

lyze the objective function of the proposed parametric models, providing connections to
well-known unsupervised graph learning models under appropriate parameter settings.

2.3.1 Overview of Exponential Families

Before presenting the proposed model, let us briefly introduce exponential family distri-
butions, a parametric set of probability distributions that include, among others, the
Gaussian, Binomial, and Poisson distributions. A class of probability distributions is re-
ferred to as exponential family distributions when they can be expressed in the following
form:

p(y) = h(y) exp
⇣

hT(y) � A(h)
⌘

, (2.6)

where h is the base measure, h are the natural parameters, T is the sufficient statistic of the
distribution, and A(h) is the log-normalizer or log-partition function [And70]. Through
the selection of distinct base measure and sufficient statistics, we can obtain different
probability distributions. For instance, the base measure and sufficient statistic of the
Bernoulli distribution are h(y) = 1 and T(y) = y, respectively, while for the Poisson
distribution we have h(y) = 1/y! and T(y) = y.

As mentioned above, exponential families contain a wide range of commonly used
distributions, providing a general class of models by re-parameterizing distributions in
the natural parameters h. That way, we will use the natural parameter h to design a set
of node embedding models, defining hv,u as the product of context and center vectors in
the following way:

hv,u := f
⇣

A[v]> · B[u]
⌘

,

where f is called the link function. As we will present shortly in the following section, we
have many alternative options for the form of the link function f (·).

2.3.2 Learning Node Embeddings with Exponential Families

This section introduces the proposed family of EFGE models. The main idea is to leverage
the expressive capability of exponential family distributions to condition context nodes
based on the center node of interest. First, we will describe the formulation of the general
objective function of the EFGE model. Then, we will present particular instances of the
model based on different exponential family distributions.

Let W denote a collection of node sequences generated using a random walk strategy
applied to a given graph G. Based on that, we can define a generic objective function to
learn node embeddings in the following way:

F (A, B) := argmax
W

Â
w2W

L
Â
l=1

Â
v2V

log p
⇣

y(l)
(w,v)

; W
⌘

, (2.7)

where y(l)
(w,v)

is the observed value indicating the relationship between the center wl

and context node v. Note that the objective function in (2.7) is quite similar to the one
of the Skip-gram model presented in (2.2), except that we also include nodes that are
not belonging to context sets. Rather than limiting ourselves to the sigmoid or softmax
functions for modeling the probability in the objective function of (2.7), we introduce a

Figure 3.1: Schematic representation of the BraneExp model.

3.2 learning embeddings on multilayer graphs with random walks

This section is based on material from a conference article co-authored with Surabhi
Jagtap, Abdulkadir Çelikkanat, Aurélie Pirayre, Frédérique Bidard, and Laurent Duval
published in the European Signal Processing Conference (EUSIPCO) [Jag+21b].

In this section, we will introduce our first model, BraneExp, which constitutes a simple
extension of the EFGE model discussed in Sec. 2.3 to multilayer graphs. The methodology
presented here can be applied to any embedding technique that relies on random walk
sampling. BraneExp has the following conceptual advances: (i) it preserves both the
intra-layer and inter-layer interactions, thereby learning rich features; (ii) it is quite an
effective method as it uses a properly-chosen conditional probability distribution model
to learn low-dimensional node features from all input networks. We first describe how
relevant node pairs are sampled with multilayer random walks—a key step towards
integrating information across different layers (views) of the graph. Then, we learn node
representations by modeling the underlying interactions among nodes with exponential
family distributions. A schematic representation of BraneExp is given in Fig. 3.1.

context sampling with multilayer biased random walks . In our approach,
sampling random walks holds significant importance as it serves two purposes: modeling
interactions among nodes and facilitating data integration across input layers. Due to
the complex multilayer graph structure, each layer may possess a completely different
topological structure, and nodes in the graph layers may have divergent roles. Thus,
our task becomes more challenging compared to classical graph representation learning
approaches described in Sec. 2. Therefore, we leverage random walks to sample nodes
sharing similar characteristics across different graph layers—with the objective being to
learn node representations in a lower-dimensional space that capture the underlying
patterns shared across these network layers.

To extract nodes’ context in a multilayer graph, we leverage a biased random walk
sampling procedure that explores local and global structures in the multilayer graph
[NM18] (this is a random walk strategy that we have introduced in the past for sampling
biased random walks in single-layer graphs). Local exploration helps discover the
clustering structure around the node of interest, whereas global exploration contributes
to capturing global associations within nodes in the graph. Both exploration types are
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Figure 3.2: Multilayer random walk sampling with BraneExp.

particularly important within the biological context of our application domains. Let
us consider, for instance, gene co-expression networks with the relationships between
regulators, such as transcription factors (TFs) and the target genes they control. In this
case, the relationship between a TF and its target gene is a local structure, while functional
relationships among the co-expressed genes are more related to global structure in the
graph. A schematic representation of the process is shown in Fig. 3.2. The model
combines both types of exploration (i.e., local and global) with a decay parameter α to
control the importance of nodes with respect to their distance from the node of interest.
More formally, for each node vi ∈ V , a proximity score τi is computed to estimate how
far the candidate node vi is from the source node. When the i-th node in the walk is
discovered, the proximity score of every node adjacent to that is increased by αi−1 and
ᾱi−1, for nodes in the same and different layer respectively, where α, ᾱ ∈ [0, 1]. Then,
the probability of selecting the next node for the current walk is computed based on the
proximity scores of the neighborhood nodes of the most recently visited node. For local
explorations, the probability of a node being the next one in the random walk sequence is
proportional to its proximity score, i.e., pi =

τi
∑w∈N (u) τw

. In the case of global exploration,

the probability is set to be inversely proportional to that score, i.e., pi = 1/τi
∑w∈N (u) 1/τw

,

where u is the most recently visited node, and N (u) defines the set of neighbors of
u. Thus, given a desired exploration strategy, the context set for each node vi can be
extracted.

learning embeddings with exponential family distributions . After sam-
pling random walks in the multilayer graph, the representation learning process follows
the principles presented in Sec. 2.3, aiming to maximize the co-occurrence probability
of nodes within a certain distance from the node of interest. Specifically, we employ
the EFGE-Bern model, in which node co-occurrences within random walk sequences
are modeled with a Bernoulli distribution, as given in Eq. (2.10). As we will present
shortly in Sec. 3.3.3, the embeddings computed by the BraneExp model have the ability
to perform well on a variety of downstream prediction tasks.
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Figure 3.3: Schematic representation of BraneMF.

3.3 multilayer graph embeddings with joint matrix factorization

This section is based on material from two journal articles co-authored with Surabhi
Jagtap, Abdulkadir Çelikkanat, Aurélie Pirayre, Frédérique Bidard, and Laurent Duval
published in Bioinformatics [Jag+22b] and BMC Bioinformatics [Jag+22a]. A preliminary
version of this work was published in the International Conference on Computational
Intelligence Methods for Bioinformatics and Biostatistics (CIBB) [Jag+21a].

One of the limitations of the BraneExp model presented in Sec. 3.2 is that it requires
to explicitly sample random walk sequences from a multilayer graph. Besides the
computational cost that this step incurs, it is practically difficult to control the importance
of each individual layer in the learned node representations. To address this challenge,
in this section, we will present BraneMF, an integration framework to learn embeddings
from a multilayer graph. A schematic representation of the model is given in Fig. 3.3.
BraneMF follows a two-step approach. First, it computes a random walk matrix that
effectively captures node proximity between nodes of the same layer. Then, it learns
node embeddings through a joint matrix factorizing scheme.

3.3.1 DeepWalk Random Walk Matrix

To encode the topological properties of each input graph layer, we leverage a random
walk matrix that is directly related to the DeepWalk model [PARS14]. Following the
discussion in Sec. 2.1, let W be the set of sampled random walks. DeepWalk assumes
a corpus of node sequences represented as v1, v2, . . . , vL, where L is the random walk
length. Building upon the observations by Levy and Goldberg [LG14] on SkipGram
with negative sampling, Qiu et al. [Qiu+18b] have shown that DeepWalk when negative
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sampling is employed, is equivalent to factorizing the following pointwise mutual
information matrix:

log
(

#(v, c)|W|
#(v).#(c)

)
− log k

︸ ︷︷ ︸
SkipGram

≈ log

(
vol(G)

γ

(
γ

∑
r=1

Pr

)
D−1

)
− log k

︸ ︷︷ ︸
DeepWalk matrix M̂

.

Here we assume that graph G = (V , E) is undirected, connected, and non-bipartite.
On the left-hand side, #(v, c), #(v), and #(c) denote respectively the number of times
node-context pair (v, c), node v, and context c appear in W , while k is the number of
negative samples. On the right-hand side and the definition of the DeepWalk matrix M̂,
D is the diagonal degree matrix of G, P is the transition matrix D−1A, γ is the window
size, and vol(G) = ∑u,v A(u, v). The logarithm is applied element-wise, which makes M̂
ill-defined. Thus, we consider the shifted positive pointwise mutual information (PPMI)
matrix defined as

M := log

(
max

(
1,

vol(G)

kγ

(
γ

∑
r=1

Pr

)
D−1

))
. (3.1)

Based on this formulation, we obtain the set of DeepWalk matrices M = {M(l)}L
l=1

for the different graph layers G(l), l = 1, . . . , L of the multilayer graph G. As we will
present in the following section, this set of matrices can be jointly decomposed to learn
embeddings in a multilayer graph.

3.3.2 Joint Representation Learning for Multilayer Graphs

The set of matrices M, as computed by (3.1), captures node proximity that still represents
high-dimension node features. Therefore, we want to obtain low-dimension integrated
node embeddings that could be easily fed to any downstream machine learning task
of interest. Our integration framework is developed on the construction of random
walk matrices, on which joint matrix factorization is eventually performed. To learn the
spectrum of one layer in graph G, the singular values and singular vectors of its DeepWalk
matrix M can be obtained using SVD as M = UΣV⊤, where U and V correspond to the
left and right singular vector matrices, and Σ is the diagonal singular value matrix. In
the case of a multilayer graph G composed of L layers, we have L symmetric DeepWalk
matrices. As a natural extension, we propose to approximate each matrix M(l) by a set of
jointly decomposed singular vector and singular value matrices shared by all layers, given
by M(l) ≈ UΣ(l)V⊤, l ∈ {1, . . . , L}. The correspondence above keeps, where U and V⊤

are orthogonal matrices containing the joint singular vectors and Σ(l) ∈ R|V|×|V| contains
the corresponding singular values in the layer l. The minimization of the following
objective function F yields U and V:

argmin
Ω=(U,V)

F :=
1
2

L

∑
l=1

∥M(l) − UΣ(l)V⊤∥2
F +

α

2
(∥U∥2

F + ∥V∥2
F) +

β

2
∥UV⊤ − I∥2

F, (3.2)

where I ∈ R|V|×|V| is the identity matrix, and ∥ · ∥F denotes the Frobenius norm. The first
term of the objective function F measures the overall approximation error when all layers
are decomposed over U and V⊤. The second term, the norms of U and V⊤, is added
to improve numerical stability for the solutions. The last term is a constraint to ensure
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that V⊤ is close to the inverse of U (M(l) is a symmetric matrix, thus its SVD can be
given by UΣU−1). Since (3.2) is not jointly convex on U and V⊤, we adopt an alternating
scheme to find a local minimum for F . This scheme involves fixing V⊤ initially and
optimizing U, and vice versa, as outlined in the work by Dong et al. [Don+12]. For
parameter initialization in the optimization problem, we suggest to compute the SVD of
the mean of all matrices M(l) and initialize U, Σ, and V⊤ with the resulting matrices: U
is the set of joint singular vectors, namely a joint spectrum shared by all layers in G, Σ̄

is the joint singular value matrix computed by taking the average of Σ(l) matrices. The
final embeddings Ed ∈ R|V|×d that integrate information across all input graph layers
are obtained by the first d columns of U, Ud ∈ R|V|×d scaled by the δ-th power of the
singular value magnitudes, (Σ̄d)

δ, i.e., Ed = Ud(Σ̄d)
δ.

The joint SVD process performed by BraneMF is essentially based on integrating
information from multiple graph layers by finding a joint spectrum shared by {M(l)}L

l=1.
Thus, BraneMF is an intermediate integration model where integration is performed in
the learning process of embedding computation [Zit+19]. We have also introduced a
more straightforward methodology, referred to as BraneNet [Jag+22a], corresponding to
an early integration strategy. This model performs the decomposition of a large matrix
computed by stacking the DeepWalk matrices of each input layer (similar to the notion
of the supra-adjacency matrix in multilayer graphs [Boc+14]).

3.3.3 Experimental Evaluation of BraneExp and BraneMF

This section provides an overview of the experimental evaluation of BraneExp and
BraneMF. For a comprehensive list of experiments, please refer to the corresponding
articles [Jag+21b; Jag+22b].

datasets . The experiments described here have been conducted in collaboration with
IFP Energies nouvelles (https://www.ifpenergiesnouvelles.fr/), an institute that specializes
in industrial biotechnology in the context of biofuel production. To substantiate our
methodology, we consider a multilayer protein-protein interaction (PPI) network of
Saccharomyces cerevisiae, a well-studied yeast model organism. For this study, we consider
six PPI networks for yeast extracted from the STRING database [Szk+20]: Neighborhood,
Fusion, Co-occurrence, Co-expression, Experimental, and Database. The PPI networks are built
for 6, 691 proteins. Each of these six networks corresponds to an input graph layer. We
have investigated the usefulness of the learned embeddings on various omics inference
tasks, including clustering and Gene Ontology (GO) enrichment analysis, protein function
prediction, PPI prediction, PPI network reconstruction, and Gene Regulatory Network
(GRN) inference. In the next paragraphs, we elaborate in more detail on two of those
biological downstream tasks.

baseline models . We have considered eight multilayer graph embedding and
integration methods to benchmark BraneExp and BraneMF: SNF [Wan+14], Mashup
[CBP16], deepNF [GBB18], MultiNet [BK18], Multi-Node2Vec [Wil+21], OhmNet
[ZL17], MultiVERSE [PL+21], and Graph2GO [FGZ20].

protein function prediction as a node classification task . The mul-
tilayer graph embedding models developed here allow us to obtain low-dimensional
protein features, combining different PPI networks. Here, we investigate the ability of
these features to predict protein functions, casting the problem to a multi-label node

https://www.ifpenergiesnouvelles.fr/
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(a) BRANEMF (b) BRANEEXP

Figure 3.4: Performance of BraneMF and BraneExp applied on individual (single-layer) vs.
multilayer networks. Integrating multiple networks outperforms individual network
embeddings in protein function prediction.

classification task. For functional annotations of proteins (i.e., node labels), we use Gene
Ontology (GO) terms covering three domains: biological process (BP), molecular function
(MF), and cellular component (CC) [Con04]. Each category of Gene Ontology is depicted
across three levels, namely, levels I, II, and III. Lower levels (level I) represent more
specific terms, whereas a higher level (level III) signifies more general terms. We use
the learned features to predict functional annotations using an SVM classifier [CL11;
Ped+11]. We adopt a 5-fold cross-validation (CV) process to evaluate the classification
performance. We split all the annotated proteins into a training set, comprising 80% of
the proteins, and a test set, comprising the remaining 20%. All performance results are
averaged over ten different CV trials.

First, we investigate the added value of integration for protein function prediction.
To do this, we have learned embeddings of proteins for each input network layer and
subsequently performed classification. We then compare the performance of the features
learned from individual input networks with those obtained from the integrated ones.
The results for BP, MF, and CC (level I) are shown in Fig. 3.4. Our observations
indicate that integration yields better performance for both BraneMF and BraneExp than
individual network embeddings in the context of protein function prediction. Moreover,
the Experimental, Co-expression, and Database networks demonstrate better performance,
indicating the significance of these network layers to the prediction task.

Additionally, we have explored the performance of three different network integration
strategies: early, intermediate, and late [Zit+19]. In early integration, all input graphs
are merged into a single one before the embedding learning process occurs. On the
contrary, late integration is performed after the model is applied to each network by
concatenating the learned embeddings. BraneMF is an intermediate integration model
where integration is performed in the embedding learning process. To demonstrate the
effectiveness of intermediate integration, we have compared BraneMF to BraneMF-early
and BraneMF-late. In BraneMF-early, the DeepWalk matrix M is computed from the
adjacency matrix of the graph obtained by taking the union of all six input graph layers.
In BraneMF-late, the node embeddings are learned independently for each layer, which
are then averaged to obtain the final protein features. As we can observe from the results
given in Fig. 3.5, BraneMF outperforms the rest of the integration strategies for all
three types of functional annotations. In particular, there is an increase of 2% in the
accuracy of BP I compared to BraneMF-early and an increase of 10% compared to the
BraneMF-late integration model. This improvement can be partially attributed to the fact
that separately computing the random walk matrices of each individual layer uncovers
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Figure 3.5: Performance of BraneMF compared to early and late integration strategies (F1 score
and accuracy).

Method BP I MF I CC I

SNF 0.199±0.01 0.104±0.00 0.206±0.01
Mashup 0.277±0.00 0.263±0.02 0.520±0.02
deepNF 0.341±0.01 0.342±0.02 0.564±0.02

MultiNet 0.335±0.01 0.353±0.02 0.532±0.02
Multi-Node2Vec 0.331±0.01 0.323±0.01 0.511±0.01

OhmNet 0.321±0.01 0.300±0.01 0.512±0.01
MultiVERSE 0.312±0.01 0.294±0.01 0.502±0.02

Graph2GO 0.340±0.01 0.355±0.01 0.564±0.02
BraneExp 0.352±0.01 0.368±0.01 0.548±0.03
BraneMF 0.382±0.01 0.392±0.02 0.615±0.02

Table 3.1: Comparison of models on the protein function prediction task using the F1 score.

compressed topological patterns that are difficult to identify in the combined network
(BraneMF-early model), where different edge types are not distinguished.

Finally, in Table 3.1, we compare the performance of BraneMF and BraneExp to
the baseline methods introduced earlier. We observe that protein function prediction
based on BraneMF substantially outperforms other integration methods in assigning a
previously unseen protein to its known functional categories. This performance gain is
consistent across all three Gene Ontology terms.

protein-protein interaction prediction. The interactome is the map of PPIs
that can occur in an organism. Nevertheless, it is still an open question whether experi-
mental techniques will ever discover the complete interactome of any organism. In this
context, predictive methods have gained popularity in computational biology for uncov-
ering the wiring patterns of proteins. The effective integration of PPIs from different data
sources (experimental and/or computational) can further help to infer a nearly complete
set of the interactome. In this task, we aim to predict missing (unseen) protein-protein
interactions, casting the problem to a link prediction task. Specifically, we use PPIs from
the 2015 and 2021 STRING networks to form training and test sets. We form the positive
training set from PPIs that did not change from 2015 to 2021 and the positive test set from
the PPIs that did not exist in 2015 but were discovered in 2021. The learned embeddings
of protein u and v, given by Ed[u] and Ed[v], are converted into edge feature vectors by
applying the coordinate-wise Hadamard product or cosine similarity operations. The
results are shown in Table 3.2. We have observed that BraneMF exhibits competitive
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Method AUPR-H AUROC-H AUPR-C AUROC-C

SNF 0.637 0.628 0.575 0.559
Mashup 0.757 0.743 0.712 0.707
deepNF 0.764 0.747 0.490 0.480

MultiNet 0.735 0.724 0.490 0.480
Multi-Node2Vec 0.526 0.528 0.511 0.509

OhmNet 0.513 0.514 0.516 0.516
MultiVERSE 0.500 0.501 0.501 0.501

Graph2GO 0.721 0.757 0.502 0.498
BraneExp 0.777 0.760 0.683 0.680
BraneMF 0.783 0.747 0.725 0.682

Hadamard product (-H); cosine similarity (-C).

Table 3.2: Comparison of models on the PPI prediction task using AUROC and AUPR scores.

and consistent behavior across almost all evaluation metrics for PPI prediction, achieving
1.5% higher performance (AUPR-H) than BraneExp, the second-best performing model.
deepNF and Mashup also perform well under specific evaluation metrics.

3.4 link prediction on multilayer heterogeneous graphs

This section is based on material from a journal article co-authored with Bin Liu, Dim-
itrios Papadopoulos, Grigorios Tsoumakas, and Apostolos N. Papadopoulos published
in Briefings in Bioinformatics [Liu+22a].

This section considers a link prediction task on multi-relational heterogeneous graphs.
Contrary to the models discussed in Sec. 3.2 and Sec. 3.3 that aim to learn embeddings
in an unsupervised manner, here we combine embedding generation and interaction
prediction via a matrix factorization framework. The practical application concerns
the problem of drug-target interaction (DTI) prediction in drug discovery [Bag+21].
Although in vitro experimental testing can verify DTIs, it suffers from extremely high
time and monetary costs. Using computational methods (in silico) to accurately identify
reliable interactions between drugs and proteins, often by leveraging heterogeneous
information from diverse data sources, can significantly enhance the development of
effective pharmaceuticals.

In the past, the chemical structure of drugs and the protein sequence of targets were
the main sources of information for inferring candidate DTIs [Liu+16b; PVT21]. Recently,
with the advancements in clinical medical technology, abundant drug and target-related
biological data from multifaceted sources have been exploited to boost the accuracy
of DTI prediction. Matrix factorization (MF) and kernel-based methods have utilized
multiple types of drug and target similarities derived from heterogeneous information
by integrating them into a single drug and target similarity [Zhe+13; DTG20; OAB18].
However, in doing so, they often discard the distinctive information possessed by each
similarity view. As an alternative, graph-based approaches consider the diverse drug and
target data as a heterogeneous DTI network that describes multiple aspects of drug and
target relations. Then, topology-preserving embeddings of drugs and targets are learned
either via neural network models [Wan+19] or with random walks [Luo+17; AY21b].
Although these methods can model high-order node proximity efficiently, they typically
perform embedding generation and interaction prediction as two independent tasks.
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Hence, their embeddings are learned in an unsupervised manner, failing to preserve the
topology information from the interaction network.

In this section, we will introduce the Multiple Similarity DeepWalk Matrix Factorization
(MDMF) model, which incorporates multilayer heterogeneous DTI network embedding
generation and DTI prediction within a unified optimization framework. The model
learns vector embeddings of drugs and targets that not only capture the multilayer
network topology via factorizing a DeepWalk matrix with information from diverse data
sources but also preserve the layer-specific local invariance with the graph Laplacian
for each drug and target similarity view. Based on this formulation, we instantiate two
models that leverage surrogate losses to optimize two essential evaluation measures in
DTI prediction, namely AUPR and AUC.

3.4.1 Problem Formulation

Given a drug set D = {di}nd
i=1 and a target set T = {ti}nt

i=1, the relation between drugs
(targets) can be assessed in various ways, which are represented by a set of similarity
matrices {Sd,h}md

h=1 ({St,h}mt
h=1), where Sd,h ∈ Rnd×nd (St,h ∈ Rnt×nt ) and md (mt) is the

number of relation types for drugs (targets). In addition, let the binary matrix Y ∈
{0, 1}nd×nt indicate the interactions between drugs in D and targets in T, where Yij = 1
denotes that di and tj interact with each other, and Yij = 0 otherwise. A DTI dataset
for D and T consists of {Sd,h}md

h=1, {St,h}mt
h=1 and Y. Let (dx,tz) be a test drug-target pair,

{s̄d,h
x }md

h=1 be a set of nd-dimensional vectors storing the similarities between dx and D,
and {s̄t,h

z }md
h=1 be a set of nt-dimensional vectors storing the similarities between tz and T.

A DTI prediction model predicts a real-valued score Ŷxz indicating the confidence of the
affinity between dx and tz. In addition, dx /∈ D (tz /∈ T), which does not belong to the
training set, is considered as the new drug (target). There are four prediction settings
according to whether the drug and target involved in the test pair are training entities:
(S1): predict the interaction between dx ∈ D and tz ∈ T; (S2): predict the interaction
between dx /∈ D and tz ∈ T; (S3): predict the interaction between dx ∈ D and tz /∈ T; (S4):
predict the interaction between dx /∈ D and tz /∈ T.

matrix factorization for dti prediction. In DTI prediction, MF methods
typically learn two vectorized representations of drugs and targets that approximate the
interaction matrix Y by minimizing the following objective:

min
U,V

F (Ŷ, Y) +R(U, V), (3.3)

where Ŷ = f (UV⊤) ∈ Rnd×nt is the predicted interaction matrix, f is either the identity
function ω for standard MF [Ezz+17] or the element-wise logistic function σ for Logistic
MF [Liu+16b], and U ∈ Rnd×r, V ∈ Rnt×r are r-dimensional drug and target latent
features (embeddings), respectively. The objective in (3.3) includes two parts: F (Ŷ, Y) is
the loss function to evaluate the inconsistency between the predicted and ground truth
interaction matrix, and R(U, V) concerns the regularization of the learned embeddings.
Given a test drug-target pair (dx, tz), its prediction with a specific instantiation of f is
computed based on the embeddings of dx (Ux ∈ Rr) and tz (Vz ∈ Rr):

Ŷxz =





UxV⊤
z , if f = ω

(
1 + exp(−UxV⊤

z )
)−1

, if f = σ.
(3.4)
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multiple hyper-layers

Figure 3.6: Representing a DTI dataset with three drug and two target similarities as a network.
(a) A multilayer heterogeneous network including three drug layers (blue), two target
layers (green), and six identical bipartite interaction subnetworks (orange) connecting
drug and target nodes in each layer. (b) Six multiple hyper-layers, where each of them
is composed of a drug and a target layer along with the interaction subnetwork.

3.4.2 Multiple Similarity Matrix Factorization with DeepWalk Regularization

A DTI dataset, associated with multiple drug and target similarities, can be viewed as a
multiplex heterogeneous network GDTI. This can be done by treating drugs and targets
as two types of nodes and by considering non-zero similarities and interactions as edges
connecting two homogeneous and heterogeneous entities, respectively, where the weight
of each edge equals the corresponding similarity or interaction value. In a DTI dataset,
the interaction matrix Y is typically more sparse than the similarity matrices, causing the
similarity-derived edges linking two drugs (targets) to be markedly outnumber compared
to the critical bipartite interaction edges. To balance the distribution of different types
of edges and stress relations of more similar entities in the DTI network, we replace
each original dense similarity matrix Sd,h with the sparse adjacency matrix Ŝd,h of its
corresponding k-nearest neighbors (k-NNs) graph. Formally, GDTI consists of three parts:
(i) Gd = {Ŝd,h}md

h=1, which is a multilayer drug subnetwork containing md layers, with Ŝd,h

being the adjacency matrix of the h-th drug layer; (ii) Gt = {Ŝt,h}mt
h=1, which is a multilayer

target subnetwork including mt layers with Ŝt,h denoting the adjacency matrix of the h-th
target layer; (iii) GY = Y, which is a bipartite interaction subnetwork connecting drug
and target nodes in each layer. Figure 3.6a depicts an example DTI network.

To model the interactions in the multilayer heterogeneous DTI network, we leverage
the DeepWalk matrix introduced in Sec. 3.3 in Eq. (3.1). However, the DeepWalk matrix
cannot be directly calculated for the complex DTI network that includes two multilayer
and a bipartite subnetwork. To facilitate its computation, we consider each combination
of a drug and a target layer along with the interaction subnetwork as a hyper-layer, and
reformulate the DTI network as a multilayer network containing md · mt hyper-layers.
The hyper-layer incorporating the i-th drug layer and j-th target layer, is defined by
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the adjacency matrix Ai,j =

[
Ŝd,i Y
Y⊤ Ŝt,j

]
, upon which GDTI could be expressed as a set

of hyper-layers {Ai,j}md,mt
i=1,j=1. Figure 3.6b illustrates the multiple hyper-layer network

corresponding to the original DTI network in Fig. 3.6a. Based on this formulation, we
compute a DeepWalk matrix Mi,j ∈ R(nd+nt)×(nd+nt) for each Ai,j. Finally, in order to
mine multiple DeepWalk matrices effectively, we define a unified DeepWalk matrix for
the whole DTI network by aggregating every Mi,j:

M̄ =
md

∑
i=1

mt

∑
j=1

wd
i wt

jM
i,j, (3.5)

where wd
i and wt

j are weights of i-th drug and j-th target layers respectively with

∑md
i=1 wd

i = 1 and ∑mt
j=1 wt

j = 1. The importance of each hyper-layer in (3.5) is deter-
mined by multiplying the weights of its involved drug and target layers.

Let Q = [U V]⊤ be the concatenation of drug and target embeddings. We encourage
QQ⊤ to approximate M̄, which enables the learned embeddings to capture the topology
information characterized by the holistic DeepWalk matrix. Hence, we derive the
DeepWalk regularization term that diminishes the discrepancy between M̄ and QQ⊤:

Rdw(U, V) = ||M̄ − QQ⊤||2F. (3.6)

Considering the fact that Ai,j includes four blocks, Rdw(U, V) can be expressed as

Rdw(U, V) = ||M̄Sd − UU⊤||2F + 2||M̄Y − UV⊤||2F + ||M̄St − VV⊤||2F. (3.7)

However, aggregating all per-layer DeepWalk matrices to the holistic one inevitably leads
to a substantial loss of layer-specific topology information. To address this limitation, we
employ graph regularization for each sparsified drug (target) layer to preserve per-layer
drug (target) proximity in the embedding space, i.e., similar drugs (targets) in each layer
are likely to have similar latent features. By replacing R(U, V) in (3.3) with the above
regularization terms, we arrive at the objective of the MDMF model:

min
U,V

F (Ŷ, Y) +
λM

2
Rdw(U, V) +

λd

2

md

∑
i=1

wd
i tr(U⊤Ld

i U)

+
λt

2

mt

∑
j=1

wt
jtr(V

⊤Lt
jV) +

λr

2
(
||U||2F + ||V||2F

)
,

(3.8)

where Ld
i = diag(Ŝd,ie)− Ŝd,i and Lt

j = diag(Ŝt,je)− Ŝt,j are graph Laplacian matrices of
Ŝd,i and Ŝt,j respectively, λM, λd, λt, and λr are regularization coefficients.

optimizing the area under the curve with mdmf . AUPR and AUC are
two widely used area under the curve metrics in DTI prediction. Modeling differentiable
surrogate losses that optimize these two metrics can lead to prediction performance
improvement [LT21]. Therefore, we instantiate the loss function F (Ŷ, Y) in (3.8) with
AUPR and AUC losses, and derive two new models, namely MDMF-AUPR and MDMF-
AUC, that optimize the AUPR and AUC metrics, respectively. The exact formulation
can be found in our article [Liu+22a]. Finally, we propose an ensemble model, called
DWFM2A, which integrates the two surrogate loss MF models by aggregating their
predicted scores. Given a test pair (dx, tz) along with its predicted scores ŶAUPR

xz and
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Setting Dataset WkNNIR MSCMF NRMFL GRGMF MF2A DRLSM DTINet NEDTP MDMF2A

S1

NR - 0.628 0.640 0.658 0.673 0.642 0.508 0.546 0.675
GPCR - 0.844 0.860 0.844 0.870 0.835 0.597 0.798 0.874

IC - 0.936 0.934 0.913 0.943 0.914 0.693 0.906 0.946
E - 0.818 0.843 0.832 0.858 0.811 0.305 0.78 0.859

Luo - 0.599 0.603 0.636 0.653 0.598 0.216 0.080 0.679

S2

NR 0.562 0.531 0.547 0.564 0.578 0.570 0.339 0.486 0.602
GPCR 0.540 0.472 0.508 0.542 0.551 0.532 0.449 0.451 0.561

IC 0.491 0.379 0.479 0.493 0.495 0.466 0.365 0.407 0.502
E 0.405 0.288 0.389 0.415 0.422 0.376 0.173 0.33 0.428

Luo 0.485 0.371 0.458 0.462 0.472 0.502 0.187 0.077 0.480

S3

NR 0.560 0.505 0.519 0.545 0.588 0.546 0.431 0.375 0.582
GPCR 0.774 0.690 0.729 0.755 0.787 0.757 0.546 0.684 0.788

IC 0.861 0.827 0.838 0.851 0.863 0.855 0.599 0.800 0.865
E 0.728 0.623 0.711 0.715 0.731 0.712 0.313 0.615 0.738

Luo 0.243 0.080 0.204 0.234 0.292 0.248 0.061 0.046 0.299

S4

NR 0.309 0.273 0.278 0.308 0.289 0.236 0.249 0.160 0.286
GPCR 0.393 0.323 0.331 0.368 0.407 0.077 0.306 0.290 0.407

IC 0.339 0.194 0.327 0.347 0.352 0.086 0.264 0.251 0.356
E 0.228 0.074 0.221 0.224 0.235 0.063 0.100 0.112 0.239

Luo 0.132 0.018 0.096 0.106 0.175 0.061 0.035 0.030 0.182

Table 3.3: AUPR results in all prediction settings.

ŶAUC
xz obtained from MDMF-AUPR and MDMF-AUC respectively, the final prediction

output by MDMF2A is defined as:

Ŷxz = βŶAUPR
xz + (1 − β)σ(ŶAUC

xz ), (3.9)

where β ∈ [0, 1] is the trade-off coefficient for the two MF base models, and σ converts
ŶAUC

xz and ŶAUPR
xz into the same scale, i.e., (0, 1).

3.4.3 Experimental Evaluation of MDMF

datasets . In our study, we have used five DTI datasets. Four of them are datasets
constructed by Yamanishi et al. [Yam+08], each one corresponding to a target protein
family, namely Nuclear Receptors (NR), Ion Channel (IC), G-protein coupled receptors
(GPCR), and Enzyme (E). Since the datasets were introduced in 2008, we have further
enhanced them with newly discovered interactions between drugs and targets from
relevant databases. Four types of drug and target similarities have been used to construct
the different layers of the multilayer graph. The last dataset has been provided in the
study by Luo et al. [Luo+17] (denoted as Luo) and contains four drug and three target
types of similarity.

baseline models . In the sample experiments that we report below, we have com-
pared MDMF2A to seven DTI prediction models, namely WkNNIR [Liu+22b], NRLMF
[Liu+16b], MSCMF [Zhe+13], GRGMF [Zha+20], MF2A [LT21], DRLSM [DTG20], DTINet
[Luo+17], and NEDTP [AY21b]).
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Figure 3.7: The average rank of MDMF2A and its variants over all five datasets and four settings.
A lower rank indicates better performance.

dti prediction results . Table 3.3 gives the performance of MDMF2A and the
baseline models under four prediction settings discussed in Sec. 3.4.1. Here, we report
results with the AUPR metric; a similar performance has been observed for AUC.
MDMF2A consistently ranks among the best-performing models for both metrics (AUPR
and AUC) in all prediction settings (S1 - S4). This demonstrates the effectiveness of our
model to sufficiently exploit the topological information embedded in the multilayer
heterogeneous DTI network and optimize the two area under the curve metrics. MF2A is
the runner-up model. Its inferiority to MDMF2A lies in its failure to consider higher-order
proximity captured by random walks and the view-specific information loss caused by
aggregating multi-type similarities.

ablation study. To demonstrate the effectiveness of the ensemble framework of
MDMF2A of (3.9) and the regularization terms employed in (3.8), we conduct an ablation
study by considering five degenerate variants of the model: (i) MDMF-AUPR by setting
β to 1; (ii) MDMF-AUC by setting β to 0; (iii) MDMF2A-M excludes the DeepWalk
matrix regularization, i.e., λM = 0; (iv) MDMF2A-dt does not consider layer-specific
graph regularization i.e., λd = λt = 0; (v) MDMF2A-r ignores Tikhonov regularization,
i.e., λr = 0. The average rank of MDMF2A and its five variants over all five datasets
and four settings are shown in Fig. 3.7. Firstly, it is important to note that while
MDMF-AUPR and MDMF-AUC demonstrate good performance in the specific metric
they optimize, their performance deteriorates in the other metric. MDMF2A outperforms
its two base models in terms of both AUC and AUPR, providing strong evidence of
the successful integration of two single metric-aware models, resulting in performance
improvement. Concerning the regularization terms, we observe that removing any
term would trigger severe performance degradation, confirming their importance in
MDMF-based models. More specifically, the DeepWalk matrix regularization term,
which captures higher-order proximity in the graph topology, is the most crucial one.
Layer-specific graph regularization that preserves distinctive information from each view
comes next and contributes more to AUC. Although the damage caused by neglecting
Tikhonov regularization is less than the other two terms, its function to avoid overfitting
cannot be ignored.
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3.5 discussion

This chapter examined representation learning techniques for multilayer and hetero-
geneous graphs. Our first approach, BraneExp, extended random walk models to
multilayer graphs. Despite the good performance, the model requires sampling random
walk sequences, which renders training and parameter tuning challenging. Our second
model, BraneMF, leveraged the DeepWalk matrix within a joint matrix factorization
framework to learn embeddings on a multilayer graph. This intermediate integration
model achieved highly competitive performance in various protein analysis tasks. Finally,
we studied the problem of DTI prediction by effectively mining the graph structure of a
multilayer heterogeneous network involving diverse drug and target similarities. MDMF
relied on a matrix factorization framework with DeepWalk regularization, allowing also
to simultaneously optimize the AUPR and AUC surrogate loss functions.
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G raph neural network (GNN) models have emerged as the current “workhorse”
in graph representation learning and geometric deep learning, in general. This
chapter presents an overview of our contributions to this field. After Sec. 4.1,

which discusses the basic background concepts, we present three methodologies that
aim to address challenging problems while learning and making predictions with GNNs.
First, we introduce the SJRL model that allows the design of deep GNNs alleviated from
over-smoothing and over-squashing (Sec. 4.2). Then, we present HoscPool, a hierarchical
clustering and pooling model for GNNs (Sec. 4.3). The third approach, GraphSVX, deals
with the design of explainability models for GNNs (Sec. 4.4). The content of this chapter
is based on the following publications:

• Jhony H. Giraldo, Konstantinos Skianis, Thierry Bouwmans, and Fragkiskos D.
Malliaros. On the Trade-off between Over-Smoothing and Over-Squashing in Deep
Graph Neural Networks. In CIKM,. 2023.

• Alexandre Duval and Fragkiskos D. Malliaros. Higher-order Clustering and Pooling
for Graph Neural Networks. In CIKM,. 2022, pp. 426–435.

• Alexandre Duval and Fragkiskos D. Malliaros. GraphSVX: Shapley Value Explana-
tions for Graph Neural Networks. In ECML PKDD,. 2021, pp. 302–318.

4.1 background

In this chapter, we consider undirected, connected, and unweighted graphs. A ∈
{0, 1}N×N is the adjacency matrix of G such that A(i, j) = 1 if (i, j) ∈ E and A(i, j) = 0
otherwise. Moreover, D ∈ RN×N is the diagonal degree matrix of G such that D(i, i) =
∑N

j=1 A(i, j) ∀ i = 1, . . . , N, and di = D(i, i). L = D − A is the positive semi-definite

combinatorial Laplacian operator. Similarly, Lsym = D− 1
2 LD− 1

2 = I − D− 1
2 AD− 1

2 is the
symmetrically normalized Laplacian matrix with eigenvalues 0 = λ1 < λ2 ≤ · · · ≤ λN ≤
2 and corresponding eigenvectors {u1, u2, . . . , uN}. A detailed discussion of concepts in
spectral graph theory can be found at [Chu97; VL07].

GNN models have attracted the interest of the community mainly due to their com-
petitive performance in various tasks, including node, edge, and graph-level predictions
[Ham20; Wu+21; Bro+21]. Such models can simultaneously leverage structural and
non-structural information (e.g., node features) in the representation learning process.
Typically, GNNs learn low-dimensional node representations following a message passing
mechanism [Gil+17]. Nodes iteratively aggregate neighborhood information, updating
their embedding vector and forming the input for the next layer. Let G be a graph with a
set of input features X ∈ RN×F1 = [x1, . . . , xN ]

T. The output of a generic message passing
neural network (MPNN) is defined as follows:

h(l+1)
i = ϕ


h(l)

i ,
⊕

j∈Ni

ψ
(

h(l)
i , h(l)

j

)

 , (4.1)
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where H(l) ∈ RN×Fl = [h(l)
1 , . . . , h(l)

N ]T is the Fl-dimensional embeddings after l layers
such that each h(l)

i ∈ RFl and H(1) = X, ψ is a family of learnable message functions,
⊕

is a permutation-invariant function such as sum, mean, or maximum, and ϕ is an update
function. This generic message passing formulation encapsulates several instances of
GNN layers. In the case of convolutional networks, a weighted neighborhood aggregation
scheme is applied

h(l+1)
i = ϕ


h(l)

i ,
⊕

j∈Ni

cijψ
(

h(l)
j

)

 , (4.2)

where the weight cij is based on the degree of node i and thus can be computed directly
from the adjacency matrix A. Prominent models here are the Graph Convolutional
Networks (CGN) [KW17] as well as the ChebNet model [DBV16] that follows a spectral
formulation. In the case of attention networks proposed in the Graph Attention Network
(GAT) model [Vel+18], the importance of each neighborhood node is captured via an
attention mechanism [Vas+17a],

h(l+1)
i = ϕ


h(l)

i ,
⊕

j∈Ni

α
(

h(l−1)
i , h(l−1)

j

)
ψ
(

h(l)
j

)

 , (4.3)

where α is a learnable self-attention function. Other widely-used GNN instances include
GraphSAGE [HYL17a] that comes with a flexible neighborhood aggregation mechanism,
and the Graph Isomorphism Network [Xu+19] with a focus on expressiveness.

4.2 towards deep graph neural networks

This section is based on material from an article co-authored with Jhony H. Giraldo,
Konstantinos Skianis, and Thierry Bouwmans published in the ACM International
Conference on Information and Knowledge Management (CIKM) [Gir+23].

Although GNNs have demonstrated great success in modeling graph-structured data,
they are not immune to the limitations that commonly affect neural networks, such as
overfitting and vanishing gradients [Li+19]. In addition, GNNs have two known intrinsic
limitations, namely over-smoothing [OS20] and over-squashing [AY21a], that remain
poorly understood. These issues arise when stacking multiple message passing layers,
leading to the degradation of node representations and the distortion of information
aggregated from distant nodes. Over-smoothing results from node features becoming
more similar with increasing convolutional layers [OS20], while over-squashing occurs
due to severe information compression through bottleneck edges [AY21a]. These issues
become particularly relevant when dealing with graphs with large diameters and long-
range dependencies between nodes [Dwi+22]. Figure 4.1 shows an example of long-range
dependencies between two nodes in a graph. We can quickly realize that the amount
of messages we need to send from one node to the other grows exponentially, and this
amount of information should be squashed in a few bottleneck edges.

In the related literature, both problems have mainly been addressed separately. For
over-smoothing, techniques involving graph topology rewiring, either as a preprocessing
step [GWG19] or during training (via dropping edges) [Ron+20], have been proposed.
Regarding over-squashing, a fully-adjacent matrix (i.e., each pair of nodes is connected
by an edge) is added in the last GNN layer to mitigate the problem [AY21a]. More
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Long-range dependencies

Bottlenecks
Messages

Figure 4.1: Long-range dependencies and bottleneck edges in graph neural networks.

recent approaches consider rewiring methods based on the concept of Ricci curvature in
differential geometry [Top+22; Liu+23c]. As we will present shortly, our methodology
moves in a similar direction but aims to study both problems simultaneously.

In this section, we establish a fundamental topological relationship between over-
smoothing and over-squashing in deep GNNs, leveraging the properties of the random
walk matrix and the spectral gap of the Laplacian matrix [Chu97]. Specifically, we employ
the Cheeger inequality [Che70] to highlight the inherent trade-off between over-smoothing
and over-squashing, emphasizing that improving one aspect invariably deteriorates the
other. To navigate this trade-off, we propose an algorithm (called SJLR) that dynamically
adds and removes edges during GNN training to mitigate both phenomena.

4.2.1 The Over-smoothing vs. Over-squashing Trade-off

over-smoothing . Graph convolutions usually use smoothing functions on each
layer. Therefore, when we apply several graph convolution layers, the performance can
suffer from over-smoothing, where node embeddings from different clusters become
mixed up [ZA20; OS20]. Intuitively, we can think of over-smoothing as a random walk
transition matrix that is repeatedly applied to a node feature, thus converging to a
stationary distribution and washing away all the feature information (this convergence is
provided in (4.5)).

over-squashing . Over-squashing is a more recent and less understood problem than
over-smoothing. As discussed earlier, in graph learning problems that involve long-range
dependencies, information from non-adjacent nodes should be propagated through the
network without distortion (e.g., Fig. 4.1). Let Br ≜ {j ∈ V : dG(i, j) ≤ r} be the receptive
field of an r-layer GNN, where dG is the shortest-path distance and r ∈ N. Let ∂h(r)

i /∂xj

be the Jacobian of a node embedding h(r)
i with respect to some input feature xj in node j.

Over-squashing can be understood as the inability of h(r)
i to be affected by xj at a distance

r. Topping et al. [Top+22] showed that
∣∣∣∂h(r+1)

i /∂xj

∣∣∣ ≤ (αβ)r+1Âr+1(i, j), if |∇ϕl | ≤ α and
|∇ψl | ≤ β for 0 ≤ l ≤ r, with ϕl , ψl differentiable functions. In many graphs, |Br| grows
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exponentially with r, and then representations of an exponential amount of neighboring
nodes should be compressed into fixed-size vectors. For example, if dG(i, j) = r + 1 in
a binary tree, we have that Âr+1(i, j) = 2−13−r, which gives an exponential decay of
the node dependence on input features at a distance r [Top+22]. This phenomenon is
referred to as over-squashing of information [AY21a; Top+22; DG+23].

over-smoothing and over-squashing . Before presenting the trade-off between
over-smoothing and over-squashing, let us define two key concepts in the analysis. Let
S ⊂ V be a subset of nodes of G. Let ∂S be the set of edges going from a node in S to
a node in V \ S , i.e., ∂S ≜ {{u, v} ∈ E : u ∈ S , v ∈ V \ S}. Therefore, we can define the
Cheeger constant hG of G as hG ≜ minS hG(S), where hG(S) = |∂S|/ min(vol(S), vol(V \
S)), and vol(S) = ∑i∈S di. Intuitively, the Cheeger constant is small when a bottleneck
exists in G, i.e., when there are two sets of nodes with few edges between them. Similarly,
we know that hG > 0 if G is a connected graph [Chu97]. We can relate the Cheeger
constant hG with the first non-zero eigenvalue of Lsym through the Cheeger inequality:

2hG ≥ λ2 ≥ h2
G
2

. (4.4)

We notice from (4.4) that to have less bottleneck structure in the graph, we need to
promote a large hG, i.e., having large values of λ2 will increase hG since hG ≥ λ2/2.

Let us now define P = D−1A to be the random walk transition matrix. For any initial
distribution f : V → R with ∑v∈V f (v) = 1, the distribution after k steps is given by
fTPk, where f ∈ RN×1 is the vector of initial distributions such that f(i) is the function
evaluated on the ith node. The random walk is ergodic when there is a unique stationary
distribution π satisfying that lims→∞ fTPs = π [Chu97]. In the case of connected and
non-bipartite graphs G, it is known that for an ergodic random walk transition matrix P,
the following holds for s ∈ N+:

∥fTPs − π∥ ≤ e−sλ′ maxi
√

di

minj
√

dj
, (4.5)

where λ′ = λ2 if 1 − λ2 ≥ λN − 1, and 2 − λN otherwise [Chu97]. Therefore, we can
compute the value of s such that ∥fTPs − π∥ ≤ ϵ as follows:

s ≥ 1
λ′ log

(
maxi

√
di/ϵ minj

√
dj
) . (4.6)

The key message of (4.5) and (4.6) is a simplified version of the same observations of
[Ron+20; OS20], i.e., GNNs converge exponentially to a stationary distribution when
stacking several layers. Next, we show that the convergence of this exponential function
depends on the spectral gap λ2. We use this result below to show the underlying
relationship between over-smoothing and over-squashing.

Theorem 4.1. Let hG be the Cheeger constant of G, and let s be the number of required steps
such that the ℓ2 distance between fTPs and π is at most ϵ. Therefore, we have that:

2hG ≥ 1
s

log

(
maxi

√
di

ϵ minj
√

dj

)
. (4.7)
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Figure 4.2: Mixing steps f (λ2, ϵ) for ϵ = 5 × 10−4 vs. number of removed or added edges for a
stochastic block model graph with two clusters and an Erdős-Rényi graph.

From Theorem 4.1, we have that if s → 0 then hG → ∞, i.e., we can reduce the bottlenecks
in the graph if we accelerate the convergence to the stationary distribution. Similarly, if
hG → 0, then s → ∞, i.e., we can avoid converging to the stationary distribution if we
promote a bottleneck-kind structure in the graph. In other words, we can reduce over-
squashing by accelerating the convergence to the stationary distribution that worsens
over-smoothing. Correspondingly, we can avoid over-smoothing by promoting having
bottlenecks that deteriorate over-squashing.

We can make the connection between over-smoothing and over-squashing more precise
using Theorem 4.1, the Simple Graph Convolution (SGC) model1 [Wu+19], and the
developments in [Top+22]. Let f (λ2, ϵ) = 1

λ2
log
(
maxi

√
di/ϵ minj

√
dj
)

be the mixing
steps of our graph, i.e., the lower bound in the maximum number of layers of an SGC
such that the difference between the initial and stationary distribution is at most ϵ. Figure
4.2 shows, for ϵ = 5 × 10−4, how f (λ2, ϵ) and λ2 change when we add or remove edges
in a stochastic block model and an Erdős-Rényi graph. We can increase the mixing steps
by removing edges, i.e., we can alleviate over-smoothing by making the graph more
“bottleneckness”. This partially explains why DropEdge [Ron+20] – a technique that
randomly removes edges while training – can alleviate over-smoothing. Conversely,
when we increase λ2 by adding edges as depicted in Fig. 4.2, we encourage greater
values of hG. In other words, we can mitigate over-squashing by reducing the graph’s
bottleneck effect. This partially explains why rewiring methodologies, such as the one
by Topping et al. [Top+22], can alleviate over-squashing. However, there is a trade-off
between f (λ2, ϵ) and λ2 from a topological point of view, i.e., we can increase f (λ2, ϵ)
by removing key edges but λ2 will decrease, and vice versa. The algorithm to add and
remove edges is described next.

4.2.2 Curvature-based Graph Rewiring Algorithm

Our rewiring methodology is based on Ollivier’s Ricci curvature on graphs [Oll09] and
its relationship to the spectral gap. Ricci curvature aims to characterize the average
geodesic dispersion at a local neighborhood in the graph. Specifically, curvature captures
the property of paths in a given direction to remain “parallel” as in Euclidean space (zero
curvature), “converge” as in the surface of a sphere (positive curvature), or “diverge”,

1 SGC is a simplified version of the Graph Convolutional Network (GCN) [KW17], where we remove all
projection parameters and all non-linear activation functions between layers.
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Addition

Dropping

Figure 4.3: The pipeline of the proposed SJLR algorithm. SJLR first saves potential good edges
Ea to add to the graph based on the JLC metric. Secondly, SJLR computes the
improvement score of adding these new edges as the average of the JLC improvement
that concerns these edges. Thirdly, edges are added and removed according to some
probability distribution during the graph neural network training.

which is the case of hyperbolic space (negative curvature) [Top+22; Ngu+23]. Ollivier
[Oll09] considers random walks from nearby nodes i, j ∈ V to define the notion of
curvature on graphs. In particular, an optimal transport problem is formulated that
measures the distance a random walk from node i should travel to meet the random
walk from j. Then, curvature κ(i, j) is defined as the ratio of the random walk distance
and the geodesic (i.e., shortest path) one. According to this definition, if κ(i, j) = 0,
then the random walks from i and j will follow parallel trajectories, maintaining the
distance between the two nodes; if κ(i, j) < 0, the trajectories diverge; and if κ(i, j) > 0,
the trajectories converge. Our analysis uses an easier-to-compute bound of Ollivier’s
Ricci curvature based on the number of triangles containing two nodes, defined by Jost
and Liu [JL14]. For an edge (i, j) in the graph,

JLC(i, j) = −
(

1 − 1
di

− 1
dj

− #(i, j)
di ∧ dj

)

+

−
(

1 − 1
di

− 1
dj

− #(i, j)
di ∨ dj

)

+

+
#(i, j)
di ∨ dj

, (4.8)

where #(i, j) is the number of triangles which include (i, j) as nodes, c+ ≜ max(c, 0),
c ∨ t ≜ max(c, t), and c ∧ t ≜ min(c, t). Besides, we already know that κ(i, j) ≥ JLC(i, j),
i.e., JLC is a lower bound of Ollivier’s Ricci curvature [JL14].

Let us now make the relationship between graph curvature κ(i, j) and the analysis
presented earlier in Sec. 4.2.1. For a finite graph G, if for any edge (i, j), κ(i, j) ≥ κ > 0,
then λ2 ≥ κ [LLY11]. Using the Cheeger inequality in (4.4), we can conclude that if we
have positive Ricci curvature everywhere, then 2hG ≥ κ. Therefore, increasing curvature
will make the graph to have less bottleneck structure. In other words, having positive
JLC ensures that the receptive field of each node in a deep GNN will be polynomial in
the hop-distance rather than exponential (see also Corollary 3 in [Top+22]).

Based on this analysis, we introduce the Stochastic Jost and Liu Curvature Rewiring (SJLR)
algorithm, a GNN agnostic model which uses both curvature information (based on the
JLC metric of (4.8)) and node feature information to perform rewiring. The pipeline of the
algorithm is shown in Fig. 4.3. In a nutshell, SJLR stochastically adds and removes edges
only during training, alleviating over-squashing and over-smoothing without modifying
the initial graph, maintaining its original properties. We define a set of hyperparameters
for SJLR: (i) let pA be the percentage of added edges; (ii) let pD be the percentage of
dropped edges; and (iii) let α ∈ [0, 1] be a variable controlling how important is the JLC
metric against the embedding information while dropping or adding edges.
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SJLR first computes a bank of potential good edges to add, Ea, for improving the JLC
curvature (first part in Fig. 4.3), where the JLC metric is calculated (for all (i, j) ∈ E ) and
sorted (in ascending order). To this end, we look at every edge (i′, j′) from the sorted
JLC vector, and we compute A = {{(Ni′ \ j′)× j′}⋃{(Nj′ \ i′)× i′} : A /∈ E}, which is
the set of edges that form triangles with (i′, j′) and are not in E . We append this set A
to Ea until we have at least 2pA|E | edges in Ea. Therefore, we associate a score σ(m) to
every edge (r, s) ∈ Ea, which is computed as the average improvement of curvature from
adding that edge (r, s) to the graph (second part in Fig. 4.3). Let σ ∈ R|Ea| be the vector
of JLC improvements, such that:

σ(m) =
1

|E(r,s)| ∑
(i′,j′)∈E(r,s)

JLC′(i′, j′)− JLC(i′, j′), (4.9)

where JLC′(i′, j′) is the JLC metric of edge (i′, j′) computed in the augmented graph
G′ = (V , {E ∪ (r, s)}), and E(r,s) ⊂ E is the set of edges that form a triangle with the edge
(r, s) ∈ Ea. Before the GNN training loop, we normalize JLC(i, j) and σ(m) and save
them in two vectors ϕd and ϕa. During the GNN training for each layer l:

(i) We compute the euclidean distances of node features d(l)(p) = ∥h(l)
i −h(l)

j ∥ ∀ (i, j) ∈
E , 1 ≤ p ≤ |E| and a(l)(q) = ∥h(l)

r − h(l)
s ∥ ∀ (r, s) ∈ Ea, 1 ≤ q ≤ |Ea|.

(ii) We normalize d(l) and a(l) to be in [0, 1] and get d(l)
n and a(l)n .

(iii) We drop and add edges according to a probability distribution (third part in Fig.
4.3).

It is worth noting that the addition of potential good edges could be partially parallelized
since there is no sequential procedure. This is an important difference regarding previous
methods [Top+22], where edges cannot be added in parallel. Let us also mention here that
other recent techniques follow a similar approach based on graph curvature optimization
to balance over-smoothing and over-squashing [Ngu+23].

4.2.3 Experimental Evaluation of SJLR

baseline models . We have performed a set of experiments to compare SJLR to
eight state-of-the-art methods to alleviate over-smoothing or over-squashing includ-
ing Residual/Dense Connections (RDC) [Li+19], Graph Diffusion Convolution (GDC)
with personalized PageRank kernel [GWG19], DropEdge (DE) [Ron+20], PairNorm
(PN) [ZA20], Differentiable Group Normalization (DGN) [Zho+20], Fully-Adjacent (FA)
layers [AY21a], Stochastic Discrete Ricci Flow (SDRF) [Top+22], and First-order Spec-
tral Rewiring (FoSR) [KBM23]. For all experiments, our GNN base models are SGC
[Wu+19] and GCN [KW17], tuning the number of layers (L ∈ {2, 3, 4}). Details about the
experimental setup can be found in the corresponding article [Gir+23].

datasets . We evaluate all methods in nine node classification datasets: Cornell, Texas,
and Wisconsin from the WebKB project2, Chameleon [RAS21], Squirrel [RAS21], Actor
[Tan+09], Cora [McC+00], Citeseer [Sen+08], and Pubmed [Nam+12].

node classification results . Tables 4.1 and 4.2 provide the results for SGC and
GCN, respectively. SJLR shows the best overall performance in both cases. We notice

2 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
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Method Cornell Texas Wisconsin Chameleon Squirrel Actor Cora Citeseer Pubmed

Backbone 53.40±2.11 56.69±1.78 47.90±1.73 38.40±0.69 40.52±0.54 29.93±0.16 76.94±1.31 67.45±0.80 71.79±2.13
GDC 58.65±1.43 57.42±0.74 45.93±1.05 38.13±0.55 36.63±0.31 32.25±0.17 76.02±1.70 66.22±1.13 71.91±2.30

DE 61.99±1.04 57.88±0.81 54.78±0.89 40.38±0.47 41.28±0.32 30.62±0.17 80.59±0.80 68.63±0.51 74.47±1.65
PN 53.11±1.36 50.47±1.04 48.72±1.65 41.49±0.68 39.72±0.33 22.58±0.29 75.55±0.42 64.16±0.41 73.81±0.52

DGN 55.68±1.32 57.42±2.59 50.67±2.08 40.99±0.62 41.72±0.29 29.53±0.18 80.65±0.48 67.65±0.59 74.95±0.59
SDRF 54.68±1.29 55.36±1.48 47.81±1.51 38.07±0.77 39.94±0.53 30.04±0.17 76.04±1.69 67.60±0.80 69.62±2.35
FoSR 53.73±1.75 56.33±1.37 47.82±2.14 38.01±0.73 40.68±0.42 30.11±0.18 78.24±0.98 67.04±0.83 72.76±2.35

SJLR (ours) 67.37±1.64 58.40±1.48 55.42±0.92 40.17±0.49 41.91±0.34 30.81±0.18 81.24±0.77 68.39±0.69 76.28±0.96

Table 4.1: Comparison of SJLR to baseline methods with the SGC model as the backbone.

Method Cornell Texas Wisconsin Chameleon Squirrel Actor Cora Citeseer Pubmed

Backbone 67.34±1.50 58.05±0.96 52.10±0.95 40.35±0.48 42.12±0.29 28.62±0.36 81.81±0.26 68.35±0.35 78.25±0.37
RDC 63.78±1.68 59.47±1.00 50.89±1.00 40.33±0.51 41.98±0.31 28.97±0.33 81.54±0.26 68.70±0.35 78.42±0.39
GDC 64.18±1.36 56.43±1.15 49.61±0.95 38.49±0.51 33.20±0.29 31.08±0.27 82.63±0.23 69.15±0.30 79.04±0.37

DE 63.39±1.29 57.41±0.93 47.84±0.86 40.80±0.55 41.68±0.39 29.99±0.21 81.90±0.24 68.99±0.36 78.53±0.26
PN 64.44±1.39 60.93±1.15 51.78±0.95 40.37±0.59 40.92±0.31 28.21±0.21 78.89±0.32 66.95±0.40 76.60±0.41

DGN 65.19±1.79 58.91±0.93 50.76±0.92 40.06±0.60 41.30±0.32 28.32±0.36 81.34±0.31 69.25±0.35 78.06±0.42
FA 53.57±0.00 59.26±0.00 43.02±0.49 27.76±0.29 31.51±0.00 26.69±0.50 29.85±0.00 23.23±0.00 39.24±0.00

SDRF 63.88±1.68 56.40±0.89 40.99±0.62 40.74±0.45 41.44±0.37 28.95±0.33 81.42±0.26 69.37±0.31 77.74±0.42
FoSR 56.65±0.93 50.01±1.37 53.73±1.08 40.26±0.50 41.83±0.28 28.80±0.35 81.79±0.26 67.99±0.37 78.26±0.39

SJLR (ours) 71.75±1.50 60.13±0.89 55.16±0.95 41.19±0.46 41.86±0.29 29.89±0.20 81.95±0.25 69.50±0.33 78.60±0.33

Table 4.2: Comparison of SJLR to baseline methods with the GCN model as the backbone.

two general trends: (i) rewiring methods such as DE and SJLR dominate in almost all
datasets for the experiment with SGC; and (ii) GDC leads in the homophilous datasets
Cora and Pubmed with GCN. Our theoretical results are based on the assumption that
there are no non-linear activation functions, so perhaps some nuances are missed for
GNNs like GCN. Similarly, we notice that SJLR outperforms SDRF [Top+22] and FoSR
[KBM23] in all datasets. For SJLR and SDRF, both methods use the same JLC metric in
Tables 4.1 and 4.2, and therefore we are assessing their performance based on how the
edges are added or removed. We argue that SJLR is a critical improvement over SDRF
regarding the practical adoption of curvature-based methods in GNNs.

ablation study. We conduct an ablation study to examine the influence of the
addition and removal of edges in SJLR, employing SGC as the backbone model in
alignment with our theoretical findings. To explore this, we perform hyperparameter
optimization and obtain the results summarized in Table 4.3. The findings suggest that
the addition and removal of nodes are complementary and additive in performance. For
example, for nearly all datasets, adding and removing edges leads to better performance
than applying one strategy alone. This is an important difference regarding recent works
[KBM23; Liu+23c] where edges are only added or removed. We theoretically (Theorem
4.1) and empirically (Tables 4.1 and 4.2) show that both, removing and adding edges, are
required to find a good compromise in the over-smoothing over-squashing trade-off.

limitations . One of the limitations of SJLR is the optimization of hyperparameters.
Due to the expanded search space, finding an optimal set of hyperparameters for SJLR
through random search becomes more challenging than simpler methods. Another
significant limitation is that the current implementation of SJLR relies on a bank Ea of
good edges to add, which is based solely on the triangles of edges with the most negative
curvature. As a result, it is not possible to have edges that directly connect long-distance
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Dropping Adding Cornell Texas Wisconsin Chameleon Squirrel Actor Cora Citeseer Pubmed

✗ ✗ 53.40±2.11 56.69±1.78 47.90±1.73 38.40±0.69 40.52±0.54 29.93±0.16 76.94±1.31 67.45±0.80 71.79±2.13
✓ ✗ 59.26±1.61 56.16±0.85 53.64±0.97 39.95±0.81 41.27±0.39 30.04±0.19 80.86±0.76 68.48±0.51 75.19±1.51
✗ ✓ 54.07±2.36 56.79±1.93 45.44±1.95 38.20±0.58 41.57±0.32 29.86±0.19 73.90±2.01 66.20±1.05 69.56±2.36
✓ ✓ 67.37±1.64 58.40±1.48 55.42±0.92 40.17±0.49 41.91±0.34 30.81±0.18 81.24±0.77 68.39±0.69 76.28±0.96

The best results on each dataset are shown in bold.

Table 4.3: Impact of dropping and adding edges in SJLR with the SGC model as the backbone.

nodes. These limitations underscore the need for further research in developing efficient
curvature metrics that can effectively account for larger distances in the graph.

4.3 clustering and pooling for graph neural networks

This section is based on material from an article co-authored with Alexandre Duval
published in the ACM International Conference on Information and Knowledge Management
(CIKM) [DM22].

In this section, we are interested in designing pooling operators used by GNNs to
compute graph-level representations, such as in the case of graph classification. Since
the goal is to predict the label of the entire graph, standard approaches pool together
all nodes’ embeddings to create a single graph representation, usually via a simple sum
or average operation [Liu+23b]. This global pooling discards completely graph structure
when computing its final representation, failing to capture the topology of many real-
world networks and thus preventing to build effective GNN architectures. More desirable
alternatives emerged to solve this limitation. They progressively coarsen the graph
between message passing layers, for instance, by regrouping highly connected nodes
(i.e., clusters) together into supernodes with adapted adjacency and feature vectors. This
allows to better capture the graph’s hierarchical structure compared to global pooling
without losing relevant information if the coarsening is accurately done. While the first
clustering-based pooling algorithms were deterministic [DBV16; Fey+18] – because of
their high computational complexity, their transductive nature, and their incapacity to
leverage node features – they were replaced by trainable end-to-end clustering approaches
such as StructPool [YJ20] and DiffPool [Yin+18]. Such methods solve the above
limitations, often by learning a cluster assignment matrix along with GNN parameters
thanks to a specific loss function, such as a link prediction score.

Despite presenting many advantages, such methods pool nodes together based on
simple functions or metrics, often lacking strong supporting theoretical foundations.
Besides, they reduce the graph uniquely based on first-order (i.e., edges) information. In
many cases, however, graph datasets may not present any clear edge-based connectivity
structure, leading to insignificant graph coarsening steps, while nodes might cluster
together with respect to more complex (domain-specific) motifs [Are+08; Les+09]. Overall,
this limits the expressiveness of the hierarchical information captured and, therefore, the
classification performance. On top of that, existing pooling operators were surprisingly
shown to perform on par with random pooling for many graph classification tasks,
raising major concerns [MSK20] and finding limited justifications. This discovery appears
rather counter-intuitive as we logically expect the graph coarsening step, that is, the
way to pool nodes together, to significantly increase the graph hierarchical information
captured in its final representation.

Here, we propose HoscPool, an end-to-end higher-order pooling operator grounded
on probabilistic motif spectral clustering to capture a more advanced type of communities
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thanks to the incorporation of higher-order connectivity patterns. The latter has shown
to be very successful for a wide range of applications [Lee+19] but has not yet been
applied to graph classification, while it could greatly benefit from it. Specifically, we
hierarchically coarsen the input graph using a cluster assignment matrix learned by
defining a well-motivated objective function, which includes continuous relaxations of
motif conductance and thus combines various types of connectivity patterns for greater
expressiveness. Since the process is fully differentiable, we can stack several such pooling
layers, intertwined by message passing layers, to capture graph hierarchical information.

4.3.1 Graph Cut and Motif Conductance

normalized cut. Clustering involves partitioning the vertices of a graph into K
disjoint subsets with more intra-cluster than inter-cluster edges [VL07; For10; MV13a].
One of the most common and effective ways to formulate this task is by solving the
Normalized Cut problem [SM00]:

min
S1,...,SK

K

∑
k=1

cut(Sk, S̄k)

vol(Sk)
, (4.10)

where S̄k = V \ Sk, cut(Sk, S̄k) = ∑i∈SK ,j∈S̄K
Aij, and vol(Sk) = ∑i∈Sk ,j∈V Aij (for simplic-

ity in the notation, we use Aij instead of A(i, j)). Unlike the simple min-cut objective,
(4.10) scales each term by the cluster volume, thus enforcing clusters to be “reasonably
large” and avoiding degenerate solutions where most nodes are assigned to a single
cluster. Although minimizing (4.10) is NP-hard, there are approximation algorithms
with theoretical guarantees for finding clusters with small conductance, such as spectral
clustering, which proposes clusters determined based on the eigenvalue decomposition
of the Laplacian matrix [VL07].

motif conductance . Higher-order connectivity patterns, also known as motifs, i.e.,
small network subgraphs like triangles , are known to be the fundamental building
blocks of complex networks [Mil+02; Bat+20]. While the Normalized Cut builds on
first-order connectivity patterns (i.e., edges), various alternative formulations have been
proposed to cluster a network based on specific higher-order substructures [BGL16;
TPM17]. Formally, for graph G, motif M made of |M| nodes, and M = {v ∈ V |M||v =
M} the set of all instances of M in G, they propose to search for the partition S1, . . . ,SK
minimizing motif conductance:

min
S1,...,SK

K

∑
k=1

cut(G)
M (Sk, S̄k)

vol(G)
M (Sk)

, (4.11)

where cut(G)
M (Sk, S̄k) = ∑v∈M 1(∃i, j ∈ v|i ∈ Sk, j ∈ S̄k), i.e., the number of instances

v of M with at least one node in Sk and at least one node in S̄k; and vol(G)
M (Sk) =

∑v∈M ∑i∈v 1(i ∈ Sk), i.e., the number of motif instance endpoints in Sk. Let us note that
besides motif conductance, the modularity criterion for community detection has also
been extended based on motifs [Are+08].

We now introduce the motif adjacency matrix AM, where each entry (AM)ij represents
the number of motifs in which both node i and node j participate. Its diagonal has zero
values. Formally, (AM)ij = ∑v∈M 1(i, j ∈ v, i ̸= j). GM is the graph induced by AM.
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(DM)ii = ∑N
j=1(AM)ij and LM are the motif degree and motif Laplacian matrices. Now,

we define a discrete cluster assignment matrix S ∈ {0, 1}N×K where Sij = 1 if vi ∈ Sj

and 0 otherwise. We denote by Sj = [S1j, . . . , SNj]
⊤ the jth column of S, which indicates

the nodes belonging to cluster Sj. Based on that, we can express (4.11) as

max
S∈{0,1}N×K

K

∑
k=1

∑i,j∈V (AM)ijSikSjk

∑i,j∈V Sik(AM)ij

≡ max
S∈{0,1}N×K

K

∑
k=1

S⊤
k AMSk

S⊤
k DMSk

≡ min
S∈{0,1}N×K

−Tr
(

S⊤AMS
S⊤DMS

)
, (4.12)

where the division sign in the last line is an element-wise division on the diagonal of
both matrices. By definition, S is subject to the constraint S1K = 1N , i.e., each node
belongs exactly to one cluster. To make the optimization problem feasible, we relax it to a
probabilistic framework, where S take continuous values in the range [0, 1], representing
cluster membership probabilities, i.e., each entry Sik denotes the probability that node
i belongs to cluster k. Next, we will demonstrate how it can be optimized within any
GNN model.

4.3.2 Higher-order Hierarchical Clustering and Pooling

higher-order clustering with gnns . We aim to design a trainable cluster as-
signment matrix S that learns to find relevant clusters based on higher-order connectivity
patterns in an end-to-end manner within any GNN architecture. Such an approach can
address the limitations of (motif) spectral clustering: we cluster nodes based both on
graph topology and node features; leverage higher-order connectivity patterns; avoid
the expensive eigenvalue decomposition of the motif Laplacian matrix; and allow to
cluster out-of-sample graphs. We compute the soft cluster assignment matrix S using
one (or more) fully connected (FC) layer(s), mapping each node’s representation Xi∗ to
its probabilistic cluster assignment vector Si∗. We apply a softmax activation function to
enforce the constraint inherited from (4.12): Sij ∈ [0, 1] and S1K = 1N :

S = FC(X; Θ). (4.13)

Θ are trainable parameters, optimized by minimizing the unsupervised loss function Lmc,
which approximates the relaxed formulation of the motif conductance problem (4.12):

Lmc = − 1
K
· Tr
(

S⊤AMS
S⊤DMS

)
. (4.14)

Referring to the spectral clustering formulation, Lmc ∈ [−1, 0]. It reaches −1 when GM
has ≥ K connected components (no motif endpoints are separated by clustering), and
zero when for each pair of nodes participating in the same motif (i.e., (AM)ij > 0), the
cluster assignments are orthogonal: ⟨Si∗, Sj∗⟩ = 0.

In fact, we allow the combination of several motifs inside our objective function (4.14)
via Lmc = ∑j αjLj

mc where Lj
mc denotes the objective function with respect to a particular

motif type j (e.g., edge , triangle , 4-nodes cycle ) and αj is an importance factor. This
also increases the power of our method, allowing us to find communities of nodes w.r.t.
a hierarchy of higher-order substructures. As a result, the graph coarsening step will
pool together more relevant groups of nodes, potentially capturing informative patterns
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in subsequent layers, ultimately producing richer graph representation. We implement it
for edge and triangle motifs:

Lmc = −α1

K
· Tr
(

S⊤AS
S⊤DS

)
− α2

K
· Tr
(

S⊤AMS
S⊤DMS

)
. (4.15)

We let α1 and α2 to be dynamic functions of the epoch, subject to α1 + α2 = 1, allowing
to first optimize higher-order motifs before moving on to smaller ones. It helps refine
the level of granularity progressively and was found desirable empirically. This is the
higher-order clustering formulation that we consider in the paper. In practice, we enforce
more rigorously the hard cluster assignment through an auxiliary orthogonality loss
function Lo, which encourages more balanced and discrete clusters. More details about
that can be found in the paper [DM22].

Similarly to other cluster-based pooling operators, our method relies on two assump-
tions. Firstly, nodes are identifiable via their features. Secondly, node features represent
a good initialization for computing cluster assignments. The latter is realistic due to
the homophily property of many real-world networks as well as the smoothing effect
of message passing layers discussed in Sec. 4.2, which render connected nodes more
similar.

higher-order graph coarsening with hoscpool . The methodology detailed
in the previous sections is a general clustering technique that can be used for any
clustering task on any graph dataset. In this part, we utilize it to form a pooling operator
called HoscPool, which exploits the cluster assignment matrix S to generate a coarsened
version of the graph (with fewer nodes and edges) that preserves critical information
and embeds higher-order connectivity patterns. More precisely, it coarsens the existing
graph by creating super-nodes from the derived clusters, with a new edge set and feature
vector, depending on previous nodes belonging to this cluster. More formally,

HoscPool : G = (X, A) → Gpool = (Xpool , Apool)

Apool = S⊤AS and Xpool = S⊤X.

Each entry Xpool
i,j denotes feature j’s value for cluster i, calculated as a sum of feature

j’s value for the nodes belonging to cluster i, weighted by the corresponding cluster
assignment scores. Apool ∈ RK×K is a symmetric matrix where Apool

i,j can be viewed as the
connection strength between cluster i and cluster j. Given our optimization function, it
will be a diagonal-dominant matrix, which will hamper the propagation across adjacent
nodes. For this reason, we remove self-loops. We also symmetrically normalize the new
adjacency matrix. Lastly, note that we use the original A and X for this graph coarsening
step; their motif counterparts AM and XM are simply leveraged to compute the loss
function. Our work thus differs clearly from diffusion methods and traditional GNNs
leveraging higher-order.

Because our GNN-based implementation of motif spectral clustering is fully differen-
tiable, we can stack several HoscPool layers, intertwined with message passing layers,
to hierarchically coarsen the graph representation. Ultimately, a global pooling and some
dense layers produce a graph prediction. The parameters of each HoscPool layer can be
learned end-to-end by jointly optimizing:

L = Lmc + µLo + Ls, (4.16)
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HoscPool

LossGCN HoscPool GCN HoscPool GCN Global 
Pooling

MLP
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Figure 4.4: A graph classification pipeline with HoscPool hierarchical pooling.

where Ls denotes any supervised loss for a particular downstream task (here, the cross
entropy loss). This way, we should be able to hierarchically capture relevant graph
higher-order structure while learning GNN parameters to ultimately better classify the
graphs within our dataset. A schematic representation of a graph classification pipeline
with HoscPool is given in Fig. 4.4.

4.3.3 Experimental Evaluation of HoscPool

In this section, we provide an overview of the experimental evaluation of HoscPool,
focusing on its performance as (i) a differentiable higher-order clustering algorithm and
(ii) a hierarchical pooling operator for graph classification.

graph clustering . For this experiment, we first run a message passing (MP) layer;
in this case a GCN model with skip connection for initial features: X̄ = ReLU(AXΘ1 +
XΘ2), where Θ1 and Θ2 are trainable weight matrices. We then run a Multi-Layer
Perceptron (MLP) to produce the cluster assignment matrix of dimension N × K, trained
end-to-end by optimizing the unsupervised loss function Lmc + µLo.

In terms of benchmark graphs, we use a collection of node classification datasets with
ground truth community labels: citation networks Cora, PubMed; collaboration networks
DBLP, Coauthor CS; co-purchase networks Amazon Photo, Amazon PC; communication
networks Polblogs and Eu-email3. We have also constructed three synthetic datasets: Syn1,
Syn2, Syn3 (based on several random graphs) where node labels are determined based on
higher-order community structure and node features are simple graph statistics. They are
designed to show the effectiveness of HoscPool when datasets have clear higher-order
structure, which is not always the case for the standard baseline datasets chosen.

We have compared HoscPool with the original spectral clustering (SC) and with motif
spectral clustering (MSC) based on motif conductance instead of edge conductance, i.e.,
SC applied on AM [BGL16]. We also consider pooling baselines DiffPool [Yin+18] and
MinCutPool [BGA20]. We refer to all methods by their pooling name for simplicity,
although this experiment focuses on the clustering part and does not involve the coarsen-
ing step. For ablation study, let HoscPool-1 and HoscPool-2 denote HoscPool where
Lmc in (4.15) has α2 = 0 (first-order connectivity only) and α1 = 0 (higher-order only),
respectively.

3 All datasets are available in Pytorch Geometric.

https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
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Dataset SC MSC DiffPool MinCutPool HoscPool-1 HoscPool-2 HoscPool

Cora 0.150±0.002 0.056±0.014 0.308±0.023 0.391±0.028 0.435±0.032 0.464±0.036 0.502±0.029
PubMed 0.183±0.002 0.002±0.000 0.098±0.006 0.214±0.066 0.230±0.071 0.215±0.073 0.260±0.054

Photo 0.592±0.008 0.451±0.011 0.171±0.004 0.086±0.014 0.495±0.068 0.513±0.083 0.598±0.101
PC 0.464±0.002 0.166±0.009 0.043±0.008 0.026±0.006 0.497±0.040 0.499±0.036 0.528±0.041
CS 0.273±0.006 0.011±0.009 0.383±0.048 0.431±0.060 0.479±0.022 0.701±0.029 0.731±0.018

DBLP 0.027±0.003 0.005±0.006 0.186±0.014 0.334±0.026 0.326±0.027 0.284±0.026 0.312±0.027
Polblogs 0.017±0.000 0.014±0.001 0.317±0.010 0.440±0.390 0.992±0.003 0.994±0.001 0.994±0.005

Email-eu 0.485±0.030 0.382±0.019 0.096±0.034 0.253±0.028 0.317±0.026 0.488±0.025 0.476±0.021

Syn1 0.000±0.000 1.000±0.000 0.035±0.000 0.043±0.008 0.041±0.006 1.000±0.000 1.000±0.000
Syn2 0.003±0.000 0.050±0.003 0.081±0.008 0.902±0.028 0.942±0.028 1.000±0.000 1.000±0.000
Syn3 1.000±0.000 1.000±0.000 0.067±0.001 0.052±0.002 0.115±0.006 0.826±0.005 1.000±0.000

Table 4.4: NMI obtained by clustering the nodes of various networks over ten different runs.

Table 4.4 shows the experimental results using the Normalized Mutual Information
(NMI) clustering metric [For10; MV13a]. HoscPool has a competitive performance
compared to the baseline models across most datasets. This trend is emphasized in
synthetic datasets, where we know that higher-order structure is critical, proving the
benefits of our clustering method. We have observed that DiffPool often fails to converge
to a good solution. Besides, MinCutPool, as also discussed in [Tsi+23], sometimes get
stuck in degenerate solutions (e.g., Amazon PC and Photo – all nodes are assigned to less
than 10% of clusters), failing to converge even when tuning model architecture and hyper-
parameters. HoscPool-1 shows superior performance and alleviates this issue, meaning
that it can be considered as an improved version of MinCutPool. MSC often performs
badly, revealing its excessive dependence on the presence of motifs. On the contrary, our
results highlight the robustness of HoscPool to the limited presence of motifs due to
its consideration for node features. Besides, HoscPool’s attention to finer granularity
levels allows to group nodes primarily based on motifs while still considering edges
when necessary, which may be the reason for the performance improvement with respect
to HoscPool-2. This ablation study proves the relevance of our underlying claims:
incorporating higher-order information leads to better communities, and combining
several motifs further helps. In terms of efficiency, the main complexity of HoscPool lies
in the derivation of AM, which remains relatively fast for triangle motifs: AM = A2 ⊙ A.
Despite being slower to compute compared to other coarsening graph techniques such as
MinCutPool, it is still affordable even for the larger graphs considered here.

graph classification. For this task, we consider a fixed network architecture
composed of: GNN – Pooling – GNN – Pooling – GNN – Global Pooling – Dense (×2). We
sometimes add skip connections and global pooling to the output of the first and second
GNN; and concatenate the resulting vector to the third GNN’s output. A pooling block
produces a cluster assignment matrix of dimension num nodes × int(num nodes × 0.25).

We have used several common benchmark datasets for graph classification, taken from
TUDataset [Mor+20], including three bioinformatics protein datasets Proteins, Enzymes,
and D&D; one mutagen Mutagenicity; one anticancer activity dataset NCI1; two chemical
compound datasets Cox-2-MD, ER-MD; one social network Reddit-Binary. Bench-hard
is taken from this source4 where X and A are completely uninformative if considered
alone. We split them into a training set (80%), validation set (10%), and test set (10%).
For featureless graphs, we use constant features.

4 https://github.com/FilippoMB/Benchmark dataset for graph classification

https://github.com/FilippoMB/Benchmark_dataset_for_graph_classification
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Method Proteins NCI1 Mutagen. DD Reddit-B Cox2-MD ER-MD b-hard

NoPool 71.6±4.1 77.1±1.9 78.1±1.3 71.2±2.2 80.1±2.6 58.7±3.2 72.2±2.9 66.5±0.5
Random 75.7±3.2 77.0±1.7 79.2±1.3 77.1±1.5 89.3±2.6 62.9±3.6 73.0±4.5 69.1±2.1

GMT 75.0±4.2 74.9±4.3 79.4±2.2 78.1±3.2 86.7±2.6 58.9±3.6 74.3±4.5 70.1±3.4
MinCutPool 75.9±2.4 76.8±1.6 78.6±1.8 78.4±2.8 89.0±1.4 58.9±5.1 75.5±4.0 72.6±1.5

DiffPool 73.8±3.7 76.7±2.1 77.9±2.3 76.3±2.1 87.3±2.4 57.1±4.8 76.8±4.8 70.7±2.0
EigPool 74.2±3.1 75.0±2.2 75.2±2.7 75.1±1.8 82.8±2.1 59.8±3.4 73.1±3.8 69.1±3.1

SAGPool 70.6±3.5 74.1±3.9 74.4±2.7 71.5±4.1 74.7±4.5 56.9±9.7 71.7±8.2 39.6±9.6
ASAP 74.4±2.6 74.3±1.6 76.8±2.4 73.2±2.5 84.1±1.1 60.5±5.5 74.5±5.9 70.5±1.7

HoscPool-1 76.7±2.5 77.3±1.6 79.8±1.6 78.8±2.0 91.2±1.0 61.6±3.5 76.2±4.2 72.4±0.8
HoscPool-2 77.0±3.1 80.3±2.0 92.8±1.5 66.4±4.6 92.8±1.5 66.4±4.6 77.9±4.3 73.5±0.8

HoscPool 77.5±2.3 79.9±1.7 82.3±1.3 79.4±1.8 93.6±0.9 64.6±3.9 78.2±3.8 74.0±0.4

Table 4.5: Graph classification accuracy of various pooling operators.

We have compared HoscPool to representative graph classification baseline mod-
els, involving pooling operators DiffPool [Yin+18], MinCutPool [BGA20], EigPool
[Ma+19], SAGPool [LLK19], ASAP [RST20], and GMT [BKH21]. We implement a random
pooling operator (Random) to assess the benefits of pooling similar nodes together and a
model with a single global pooling operator (NoPool) to assess how useful leveraging
hierarchical information is.

The graph classification results are reported in Table 4.5, from which we draw the
following conclusions. First of all, we observe that performing pooling proves useful,
contrary to NoPool, in most cases. HoscPool compares favorably on all datasets w.r.t.
other pooling baselines. Higher-order connectivity patterns are more desirable than
first-order ones, and combining both is even better. This observation is aligned with the
findings of the previous paragraph and shows that better clustering (i.e., graph coarsen-
ing) is correlated with better classification performance. However, while the clustering
performance of HoscPool is significantly better than baselines, the performance gap
has slightly closed down on this task. Even more surprising, the benefits of existing
advanced node-grouping or node-dropping methods are not considerable with respect to
the Random pooling baseline.

discussion. From the experiments conducted here, we have noticed that despite
effectively learning a cluster assignment matrix – that assigns nodes to more clusters and
better balances the number of nodes per cluster – the performance gain w.r.t. the Random
baseline model is often not significant. To explain this behavior, we have examined the
properties of the graph datasets used. The experiments are detailed in our article [DM22].
In a nutshell, the benchmark graphs are relatively small, with few node types co-existing
in the same graph, weak homophily, and a relatively poor community structure, which
clustering algorithms aim to exploit. Besides, because most datasets do not have dense
node features (only labels), the node identifiability assumption is shaken and does not
enable our MLP of (4.13) to fully distinguish between same-label-nodes, thus making
it impossible to place them in distinct clusters. On top of that, we now need to learn
a clustering pattern that extends to all graphs, which is a much more complex task
(compared to a single graph in the clustering task). All these points raise questions for
future work regarding the functioning of hierarchical pooling operators for graph-level
prediction tasks.
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4.4 explainability in graph neural networks

This section is based on material from an article co-authored with Alexandre Duval
published in the European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD) [DM21].

In this section, we investigate the aspect of explainability in Graph Neural Networks.
Similarly to traditional deep learning frameworks, GNNs showcase a complex functioning
that is rather opaque to humans. As the field grows, understanding them becomes
essential, especially for safety-critical applications [Yua+23]. While there exist a variety of
explanation methods [SGK17; Sel+17; Gui+18], they are not well suited for geometric data
as they fall short in their ability to incorporate graph topology information. Preliminary
approaches have proposed extensions to GNNs, including decomposition methods that
distribute the prediction score among input features using the weights of the network
architecture through backpropagation. However, in addition to limited performance, they
require the model’s internal knowledge and show gradient saturation issues due to the
discrete nature of the adjacency matrix [Pop+19]. Another strategy concerns the design of
perturbation methods, including GNNExplainer [Yin+19], PGExplainer [Luo+20], and
GraphMask [SCT21] which monitor variations in model prediction concerning different
input perturbations. Regarding other approaches, surrogate models such as GraphLIME
[Hua+23] and PGM-Explainer [VT20] build on the LIME framework [RSG16]. They
approximate the black box GNN model locally by learning an interpretable model on
a dataset built around the instance of interest. Rule-based methods such as Discern
[VF+22] extract activation rules that capture co-activated neurons in a prediction task.
Those rules are further interpreted through representative graphs embedded in the
subspace defined by the rule. Finally, XGNN [Yua+20] produces model-level insights via
graph generation trained using reinforcement learning

In this section, we first introduce a unified explanation framework encapsulating
recently proposed explainers for GNNs. It not only serves as a connecting force between
them but also provides a different and common view of their functioning, which should
inspire future work. Then, we propose GraphSVX, an explanation model that carefully
constructs and combines the key components of the unified pipeline to jointly capture the
average marginal contribution of node features and graph nodes towards the explained
prediction. We show that GraphSVX ultimately computes, via an efficient algorithm, the
game theoretic aspect of Shapley values [Sha53; LL17].

4.4.1 A Unified Framework for GNN Explainers

We first present a unified framework to regroup several GNN explanation methods, as
well as to motivate our proposed methodology, which will be introduced in the next
section. The key differences across most explanation models lie in the definition and
optimization of the three main blocks of the pipeline, as shown in Fig. 4.5:

• Mask generates discrete or continuous masks over features MF ∈ RF, nodes
MN ∈ RN , and edges ME ∈ RN×N , according to a specific strategy.

• Gen outputs a new graph G′ = (X′, A′) from the masks (ME, MN , MF) and the
original graph G = (X, A).

• Expl generates explanations, often offered as a vector or a graph, using a function
g whose definition vary across baselines.
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Figure 4.5: Overview of unified framework. All methods take as input a given graph G = (X, A),
feed it to a mask generator (Mask) to create three masks over nodes, edges, and
features. These masks are then passed to a graph generator (Gen) that converts
them to the original input space (X′, A′) before feeding them to the original GNN
model f . The resulting prediction f (X′, A′) is used to improve the mask generator, the
graph generator or the downstream explanation generator (Expl), which ultimately
provides the desired explanation—using masks and f (X′, A′). This passage through
the framework is repeated many times to create a proper dataset D from which each
generator block learns. Usually, only one is optimized with a carefully defined process
involving the new and original GNN predictions.

In the following, we show how two baseline models, namely GNNExplainer and
PGExplainer, fit the pipeline. The formulation has been applied to several other models
discussed in our article [DM21]. ⊙ stands for the element-wise multiplication operation,
σ is the softmax function, || the concatenation operation, and Mext describes the extended
vector M with repeated entries, whose size makes the operation feasible. All three masks
are not considered for a single method; some are ignored as they have no effect on final ex-
planations. Indeed, one often studies node feature MF or graph structure (via ME or MN).

GNNExplainer’s key component is the mask generator. It generates both MF and ME,
where ME has discrete values and MF continuous ones. They are both randomly initial-
ized and jointly optimized via a mutual information loss function MI(Y, (ME, MF)) =
H(Y)− H(Y|A′, X′), where Gen gives A′ = A ⊙ σ(ME) and X′ = X ⊙ Mext

F . Y represents
the class label and H(·) the entropy term. Expl simply returns the learned masks as
explanations via the identity function g(ME, MF) = (ME, MF).

PGExplainer is very similar to GNNExplainer. Mask generates only an edge mask
ME using a multi-layer neural network MLPψ and the learned matrix Z of node repre-
sentations: ME = MLPψ(G, Z). The new graph is constructed with Gen(X, A, ME) =
(X, A ⊙ ρ(ME)), where ρ denotes a reparametrization trick. The obtained prediction
fv(X, A′) is also used to maximize mutual information with fv(X, A) and backpropagates
the result to optimize Mask. As for GNNExplainer, Expl provides ME as explanations.

As we will see in the next section, the proposed GraphSVX model carefully exploits the
potential of this framework through a better design and combination of complex mask,
graph, and explanation generators—in the perspective of improving performance and
embedding desirable properties in explanations.



64 representation learning with graph neural networks

4.4.2 Shapley Value Explanations for Graph Neural Networks

GraphSVX is a post hoc model-agnostic explanation method specifically designed for
GNNs that jointly computes graph structure and node feature explanations for a single
instance. More precisely, GraphSVX constructs a perturbed dataset made of binary masks
for nodes and features (MN , MF), and computes their marginal contribution f (X′, A′)
towards the prediction using a graph generator Gen(X, A, MF, MN) = (X′, A′). It then
learns a carefully defined explanation model on the dataset (MN ||MF, f (X′, A′)) and
provides it as an explanation. Ultimately, it produces a unique deterministic explanation
that decomposes the original prediction and has a real signification (Shapley values) and
other desirable properties. Without loss of generality, we consider a node classification
task to present the method.

the shapley value . Before we present the proposed methodology, let us briefly
introduce the concept of the Shapley value. The Shapley value is a method from Game
Theory that describes how to fairly distribute the total gains of a game to the players
depending on their respective contributions, assuming they all collaborate. It is obtained
by computing the average marginal contribution of each player when added to any
possible coalition of players [Sha53]. This method has been extended to explain machine
learning model predictions on tabular data [LC01; SK10], assuming that each feature of
the explained instance (x) is a player in a game where the prediction is the payout.

The characteristic function val : S → R captures the marginal contribution of the
coalition S ⊆ {1, . . . , F} of features towards the prediction f (x) with respect to the
average prediction: val(S) = E[ f (X)|XS = xs]−E[ f (X)]. We isolate the effect of a feature
j via val(S ∪ {j})− val(S) and average it over all possible ordered coalitions S to obtain
its Shapley value as:

ϕj(val) = ∑
S⊆{1,...,F}\{j}

|S|! (F − |S| − 1)!
F!

(
val(S ∪ {j})− val(S)

)
. (4.17)

The notion of fairness is defined by four axioms (efficiency, dummy, symmetry, additivity),
and the Shapley value is the unique solution satisfying them. In practice, the sum
becomes impossible to compute because the number of possible coalitions (2F−1) increases
exponentially by adding more features. We thus approximate Shapley values using
sampling [LL17].

mask and graph generators . Let us now continue with the presentation of the
proposed GraphSVX model. First, we create an efficient mask generator algorithm that
constructs discrete feature and node masks, respectively denoted by MF ∈ {0, 1}F and
MN ∈ {0, 1}N . Intuitively, for the explained instance v, we aim at studying the joint
influence of a subset of features and neighbors of v towards the associated prediction
fv(X, A). The mask generator helps us determine the subset being studied. Associating
one with a variable (node or feature) means it is considered, while zero means it is
discarded. For now, we let Mask randomly sample from all possible (2F+N−1) pairs
of masks MF and MN , meaning all possible coalitions S of features and nodes (v is
not considered in explanations). Let z be the random variable accounting for selected
variables, z = (MF∥MN). This can be considered a simplified version of the true mask
generator.
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We now would like to estimate the joint effect of this group of variables towards the orig-
inal prediction. We thus isolate the effect of selected variables marginalized over excluded
ones and observe the change in prediction. We define Gen : (X, A, MF, MN) → (X′, A′),
which converts the obtained masks to the original input space, in this perspective. Due
to the message passing scheme of GNNs, studying the influence of nodes and features
jointly is tricky. Unlike GNNExplainer, we avoid overlapping effects by considering
feature values of v (instead of the whole subgraph around v) and all nodes except v.
Several options are possible to cancel out a node’s influence on the prediction, such as
replacing its feature vector with random or expected values. Here, we decide to isolate
the node in the graph, which totally removes its effect on the prediction. Similarly, to
neutralize the effect of a feature, as GNNs do not handle missing values, we set it to the
dataset’s expected value. Formally, it translates into:

X′ = X with X′
v = MF ⊙ Xv + (1 − MF)⊙µ (4.18)

A′ = (Mext⊤
N · A · Mext

N )⊙ I(A), (4.19)

where µ = (E[X(:, 1)], . . . , E[X(:, F)])⊤ and I(·) captures the indirect effect of k-hop
neighbours of v (k > 1), which is often underestimated. Indeed, if a 3-hop neighbor w
is considered alone in a coalition, it becomes disconnected from v in the new graph G′.
This prevents us from capturing its indirect impact on the prediction since it does not
pass information to v. To remedy this problem, we select one shortest path P connecting
w to v and include P back in the new graph. To keep the influence of the new nodes
(in P \ {w, v}) switched off, we set their feature vector to mean values. To finalize the
perturbation dataset, we pass z′ = (X′, A′) to the GNN model f and store each sample
(z, f (z′)) in a dataset D. D associates with a subset of nodes and features of v their
estimated influence on the original prediction.

explanation generator . Here, we build a surrogate model g on the dataset
D = {(z, f (z′))} and provide it as explanation. More rigorously, an explanation ϕ of f is
normally drawn from a set of possible explanations, called interpretable domain Ω. It
is the solution of the following optimization process: ϕ = arg ming∈Ω L f (g), where the
loss function attributes a score to each explanation. The choice of Ω has a large impact
on the type and quality of the obtained explanation. We choose broadly Ω as the set of
interpretable models and, more precisely, the set of Weighted Linear Regression (WLR).
In short, we intend our model to learn to calculate the individual effect of each variable
towards the original prediction from the joint effect f (z′), using many different coalitions
S of nodes and features. This is made possible by the definition of the input dataset D
and is enforced by a cross-entropy loss function:

L f ,π(g) = ∑
z

(
g(z)− f (z′)

)2
πz,

where πz =
F + N − 1
(F + N) · |z| ·

(
F + N − 1

|z|

)−1

.
(4.20)

π is a kernel weight that attributes a high weight to samples z with small or large
dimensions, or in different terms, groups of features and nodes with few or many
elements—since it is easier to capture individual effects from the combined effect in
these cases. In the end, we provide the learned parameters of g as an explanation.
Each coefficient corresponds to a node of the graph or a feature of v and represents its
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estimated influence on the prediction fv(X, A). In fact, it approximates the extension of
the Shapley value to graphs, as shown in the next paragraph.

decomposition model . We first justify why extending the Shapley value to graphs
is relevant. Looking back at the original theory, each player contributing to the total
gain is allocated a proportion of that gain depending on its fair contribution. Since a
GNN model prediction is fully determined by node feature information (X) and graph
structural information (A), both edges/nodes and node features are players that should
be considered in explanations. In practice, we have redefined how to capture the influence
of players (features and nodes) towards the prediction as val(S) = EXv [ fv(X, AS)|XvS =
xvS]− E[ fv(X, A)]. AS is the adjacency matrix where all nodes in S (not in S) have been
isolated.

Assuming model linearity and feature independence, we show that GraphSVX, in fact,
captures via f (z′) the marginal contribution of each coalition S towards the prediction:

EXv [ fv(X, AS)|XvS] = EXvS|XvS
[ fv(X, AS)]

≈ EXvS
[ fv(X, AS)] by independence

≈ fv(EXvS
[X], AS) by linearity

= fv(X′, A′),

where A′ = AS and X′(i, j) =

{
E[X(:, j)] if i = v and j ∈ S
X(i, j) otherwise.

Using the above, we prove that GraphSVX calculates the Shapley values on graph data.
This builds on the fact that Shapley values can be expressed as an additive feature
attribution model, as shown by [LL17] in the case of tabular data. In this perspective,
we set πv such that πv(z) → ∞ when |z| ∈ {0, F + N} to enforce the efficiency axiom:
g(1) = fv(X, A) = E[ fv(X, A)] + ∑F+N

i=1 ϕi. This holds due to the specific definition of
Gen and g (i.e., Expl), where g(1) = fv(X, A) and the constant ϕ0, also called base value,
equals EXv [ fv(X, Av)] ≈ E[ fv(X, A)], so the mean model prediction. Av refers to A∅,
where v is isolated.

4.4.3 Experimental Evaluation of GraphSVX

We assess the effectiveness of GraphSVX on node and graph classification tasks, both
in the presence of ground truth explanations as well as on complex real-world datasets
without ground truth, by testing the model’s ability to filter noisy features and noisy
nodes from explanations.

baseline models . We have compared the performance of GraphSVX to base-
line models that incorporate graph structure in explanations, namely GNNExplainer
[Yin+19], PGExplainer [Luo+20], PGM-Explainer [VT20], GraphLIME [Hua+23], and
XGNN [Yua+20].

datasets with ground truth . For node classification, we consider synthetic
graphs, where each input graph is a combination of a base graph together with a set
of motifs, which differ across datasets [Luo+20; Yin+19]. The label of each node is
determined based on its belonging and role in the motif. Consequently, the explanation
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Node Classification Graph Classification

BA-Shapes BA-Community Tree-Cycles Tree-Grid BA-2motifs MUTAG

Base

Community 0

Community 1
Motifs

Label 0 Label 1

NO2 NH2

Features None N (µl , σl) None None None Atom types

Visualization

Explanations by
GraphSVX

Explanation Accuracy

GNNExplainer 0.83 0.75 0.86 0.84 0.68 0.65
PGM-Explainer 0.96 0.92 0.95 0.87 0.91 0.72

PGExplainer 0.92 0.81 0.96 0.88 0.85 0.79
GraphSVX 0.99 0.93 0.97 0.93 0.99 0.77

Table 4.6: Evaluation of GraphSVX and baseline GNN explainers on various datasets. The top
part describes the construction of each dataset, with its base graph, the motif added,
and the node features generated. Node labels are represented by colors. Then, we
provide a visualization of GraphSVX’s explanations, where an important substructure
is drawn in bold, as well as a quantitative evaluation based on the accuracy metric.

for a node in a motif should be the nodes in the same motif, which creates a ground truth
explanation. This ground truth can be used to measure the performance of an explainer
via an accuracy metric. In the case of graph classification, similar to above, we use a
synthetic dataset called BA-2motifs. We also consider MUTAG consisting of molecular
graphs, each assigned to one of two classes based on its mutagenic effect.

We train the same GNN model in all cases [KW17]. The performance is measured with
an accuracy metric (node or edge accuracy depending on the nature of explanations)
on top-k explanations, where k equals the ground truth dimension. We formalize the
evaluation as a binary classification of nodes (or edges) where nodes (or edges) inside
motifs are positive and the rest ones negative.

The results on both synthetic and real-life datasets are summarized in Table 4.6.
As shown visually and quantitatively, GraphSVX correctly identifies essential graph
structure, outperforming the leading baselines on all but one task and offering higher
theoretical guarantees and human-friendly explanations. On MUTAG, the special nature
of the dataset and ground truth favors edge explanation methods, which capture slightly
more information than node explainers. In terms of efficiency, our explainer is slower than
the scalable PGExplainer despite our efficient approximation but is often comparable to
GNNExplainer (running time experiments are provided in the corresponding article
[DM21]).

real-world datasets without ground truth . We evaluate GraphSVX on
two real-world datasets (citation networks) without ground truth explanations: Cora and
PubMed. Instead of looking if the explainer provides the correct explanation, we check
that it does not provide a bad one. In particular, we introduce noisy features and nodes
to the dataset, train a new GNN on the latter (which we verify does not leverage these
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Figure 4.6: Frequency distributions of noisy features (a), (b) and nodes (c), (d) using a GAT model
on Cora and PubMed.

noisy variables), and observe if our explainer includes them in explanations. Our aim is
to investigate whether GraphSVX is capable of filtering out irrelevant features and nodes
from complex datasets and selecting only the relevant information for its explanations.

We artificially add 20% new “noisy” features to the dataset, defining them using the
existing features’ distribution. We re-train a 2-layer GAT model [Vel+18] on this noisy
data, whose test accuracy is above 75%. We then produce explanations for 50 test samples
using different explainer baseline models on Cora and PubMed, and we compare their
performance by assessing how many noisy features are included in explanations among
top-k features. Ultimately, we compare the resulting frequency distributions using a
kernel density estimator (KDE). Intuitively, since features are noisy, they are not used
by the GNN model and thus are unimportant. Therefore, the less noisy features are
included in the explanation, the better the explainer.

In the evaluation, we also include the well-known SHAP [LL17] and LIME [RSG16]
models. We also consider a Greedy procedure, which greedily removes the most
contributory features/nodes of the prediction until the prediction changes, and a Random
one, which randomly selects k features/nodes as the explanations for the prediction
being explained. The results are depicted in Fig. 4.6 (a)-(b). For all GNNs and on all
datasets, the number of noisy features selected by GraphSVX is close to zero and, in
general, lower than existing baselines—demonstrating its robustness to noise.

We follow a similar idea for noisy neighbors instead of noisy features, where the
dataset’s distribution determines each new node’s connectivity and feature vector. Only
a few baselines (GNNExplainer, Greedy, Random) among the ones selected previously
can be included for this task since GraphLIME, SHAP, and LIME do not provide
explanations for nodes. As before, this evaluation builds on the assumption that a
well-performing model will not consider as essential these noisy variables. We check
the validity of this assumption for the GAT model by looking at its attention weights.
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We retrieve the average attention weight of each node across the different GAT layers
and compare the one attributed to noisy nodes versus normal nodes. We expect it to
be lower for noisy nodes, which proves to be true: 0.11 vs. 0.15. As shown in Fig. 4.6
(c)-(d), GraphSVX also outperforms all baselines, showing nearly no noisy nodes in
explanations. GNNExplainer achieves almost as good performance on both datasets
(and in several evaluation settings).

4.5 discussion

In this chapter, we investigated aspects related to the design and functioning of graph
neural network models. We first studied the trade-off between over-smoothing and
over-squashing in the design of deep GNNs, proposing SJLR to mitigate both phenomena.
Nevertheless, our curvature-based metric relies only on local topological information.
Besides, the algorithm indirectly considers node features (contrary to directly injecting
them into the curvature metric). We then introduced HoscPool, a hierarchical graph
coarsening model for clustering and pooling in GNNs. Despite its good performance, our
experiments indicated that further investigation is needed regarding the design of pooling
operators that will significantly improve performance on graph classification tasks. This
point is closely related to the underlying topological properties of graph classification
datasets and their impact on the performance of hierarchical graph coarsening algorithms.
Finally, we introduced GraphSVX, a model to explain the predictions of a GNN. An
interesting direction here would be to consider how such models can be extended in the
case of multilayer graphs studied in Chapter 3.





5G R A P H R E P R E S E N TAT I O N L E A R N I N G F O R I N F L U E N C E
M A X I M I Z AT I O N

T he goal of this chapter is to examine applications of graph representation learn-
ing models in the tasks of influence learning and maximization. The chapter
begins with an overview of the influence maximization problem, emphasizing

how machine learning techniques could be leveraged (Sec. 5.1). Then, we introduce
two methodologies aiming to address different challenges. First, we discuss IMINFEC-
TOR, an algorithm that uses embeddings learned from diffusion cascades to perform
model-independent influence maximization (Sec. 5.2). Then, we present Glie, a graph
neural network that learns to estimate the influence spread and further utilize it for
influence maximization (Sec. 5.3). The material of this chapter is based on the following
publications:

• George Panagopoulos, Fragkiskos D. Malliaros, and Michalis Vazirgiannis. Influ-
ence Maximization Using Influence and Susceptibility Embeddings. In ICWSM,.
2020, pp. 511–521.

• George Panagopoulos, Fragkiskos D. Malliaros, and Michalis Vazirgiannis. Multi-
Task Learning for Influence Estimation and Maximization. IEEE Trans. Knowl. Data
Eng. 34:9 (2022), pp. 4398–4409.

• George Panagopoulos, Nikolaos Tziortziotis, Michalis Vazirgiannis, and Fragkiskos
D. Malliaros. Maximizing Influence with Graph Neural Networks. In ASONAM,.
2023.

5.1 background

Social influence governs multiple aspects of our lives. From choosing the product you buy
and the restaurant you visit to adopting political ideas, the strength of interactions with
others and the way information propagates can be decisive factors in a person’s life. In
the real world, it can be used for epidemic containment [DOT14], echo chamber detection
[Min+22], and misinformation mitigation in social networks [BAEA11; Far+17]. Formally,
social influence is defined as a directed measure between two users and represents
how possible it is for the target user to adapt the behavior or copy the action of the
source user. In viral marketing, influence is used to simulate how information flows
through the network toward finding the optimal set of nodes to start a campaign from,
the well-known influence maximization problem [KKT03].

In influence maximization, the users are represented as nodes in the graph while the
edges depict a relationship, such as who-follows-whom or friendship, and are associated
with an influence probability p. A stochastic diffusion model, such as the independent
cascade model [KKT03], simulates how influence spreads over the graph. It is used to
compute the number of users activated during a diffusion simulation, called the influence
spread. The aim is to find the optimal set of k users to maximize the influence spread of a
diffusion cascade starting from them [Li+18; KKT03]. More formally, according to the
independent cascade model, the influence spread starts with a set of initially activated

71



72 graph representation learning for influence maximization

nodes, often referred to as the seed set S . In each discrete time step, an active node has a
chance to activate its inactive neighbors based on the associated influence probabilities.
This process continues iteratively until no more nodes can be influenced. The final set of
activated nodes constitutes the influence spread σ(S), i.e., the average number of nodes
reached by the seed set. Notice, however, that due to the stochastic nature of the model,
Monte Carlo sampling is used to estimate the influence spread of a particular seed set,
which directly impacts the time complexity.

Given a graph G = (V , E), a diffusion model, and a positive integer k, the influence
maximization problem aims to select a subset S∗ ⊆ V composed of k seed nodes that
maximize the influence spread, i.e., σ(S∗) = argmaxS⊆V σ(S). Influence maximization is
an NP-Hard problem under the independent cascade and other related models. Although
the optimal solution cannot be computed in polynomial time, approximate solutions
can be used due to two key properties satisfied by σ(·). Specifically, let us consider
an influence function σ(·) and subsets S and T such that S ⊆ T ⊆ V . Then, σ(·) is
monotone if σ(S) ≤ σ(T ) and submodular if σ(S ∪ {v})− σ(S) ≥ σ(T ∪ {v})− σ(T).
Intuitively, monotonicity implies that adding more nodes to a seed set S does not harm
its influence spread, while the submodularity can be understood as diminishing marginal
gains of the influence spread [KKT03; Li+18].

Due to the monotonicity and submodularity properties of the influence function σ(·),
the optimal solution can be approximated through a greedy hill-climbing algorithm. The
Greedy algorithm starts with an empty seed set S , in which k nodes are iteratively added,
maximizing the marginal gain, i.e., σ(v|S) = σ(S ∪ {v})− σ(S). In terms of theoretical
guarantees about the quality of the solution, the Greedy algorithm provides a lower
bound on the influence spread of the selected seed set S which is σ(S) ≥ (1− 1/e)σ(S∗),
where S∗ corresponds to the optimal solution [KKT03]. In the related literature, several
approaches have been introduced to improve the running time of the Greedy algorithms,
retaining or not the theoretical guarantees. Examples include the Celf [Les+07] and
Celf++ [GLL11a] algorithms that exploit the submodularity property of influence spread
to reduce the number of Monte Carlo simulations. Moreover, let us mention that different
instances of the problem have been studied from diverse communities [MM15; PRF23;
Kit+10; Che+12]. We refer the reader to relevant articles for a more detailed presentation
[Li+18; Li+23].

There have also been attempts to address influence maximization with learned influence
parameters from real past cascades [GBL11; GBL10]. These models, however, suffer from
overfitting due to the number of parameters, which is proportional to the number of
edges. To reduce the number of parameters, a more practical approach is to express
the influence probabilities as a combination of the nodes’ influence and susceptibility
embeddings learned from the cascades [BLG16]. More recently, influence learning
methods devoid of diffusion models have been proposed. Such models learn embeddings
based on co-occurrence in cascades [Fen+18], similar to node embedding techniques
studied in Chapter 2. Nevertheless, most of these influence learning techniques have
not been used directly in the influence maximization problem. Although more accurate
in diffusion prediction, the input of such models consists of node-context pairs derived
from the propagation network of the cascade, a realization of the underlying network
(e.g., follow edges) based on time-precedence in the observed cascade (e.g., retweets).
However, constructing this propagation network is a time-consuming process. The
models presented in this chapter aim to address some of these challenges. A detailed
exploration of machine learning techniques for influence maximization tasks can be
found in related survey articles and tutorials [Li+23; PM21].
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5.2 learning embeddings for influence estimation and maximization

This section is based on material from two articles co-authored with George Panagopou-
los and Michalis Vazirgiannis published in the International AAAI Conference on Web
and Social Media (ICWSM) [PMV20] and IEEE Trans. Knowl. Data Eng. (TKDE) [PMV22].

One of the main problems in the influence maximization literature is that the diffusion
models utilize random or uniform influence parameters. Experiments have shown that
such an approach produces a less realistic influence spread than models with empirical
parameters [AD18]. Even when the parameters are learned empirically from historical
logs of diffusion cascades, the independent cascade (IC) model is utilized [Du+13; BLG16],
which is problematic for two reasons. Apart from severe overfitting due to the massive
number of parameters, this approach assumes influence independence throughout related
nodes or edges of the same node. This assumption overlooks the network’s assortativity,
meaning that an influential node is more prone to affect a susceptible node than a less
influential node, even when the edge of the latter to the susceptible is stronger than the
edge of the former. In addition, diffusion models themselves suffer from oversimplifying
assumptions overlooking several characteristics of real cascades [PMM18], which can
provide inaccurate estimations compared to actual cascades. At the same time, they are
highly sensitive to their parameters [Du+14].

To tackle these issues, this section presents IMINFECTOR (Influence Maximization
with Influencer Vectors), a unified approach that uses representations acquired from
diffusion cascades, enabling model-independent influence maximization that scales in
real-world datasets. The first part of the methodology is composed of a multi-task neural
network that learns embeddings for nodes that initiate cascades (influencer vectors) and
for those that participate in them (susceptible vectors). Our focus on the initiators of
cascades is justified by empirical evidence on the predominantly initiating tendency
of influencers. The model additionally embeds the aptitude of an influencer to create
lengthy cascades in the norm of the embedding. That way, the norm of an influencer
vector is used to estimate the expected influence spread and, thus, minimize the pool of
potential seed candidates Then, following suit from recent model-independent algorithms
[Lag+18; Vas+17b], we overlook the diffusion model and connect each candidate seed
(influencer) and every susceptible node with a diffusion probability using the dot product
of their respective embeddings, forming a bipartite network. Apart from removing the
time-consuming simulations, diffusion probabilities have the advantage of capturing
higher-order correlations that diffusion models fail to due to their Markovian nature.
This allows to reformulate the network as a bipartite graph, introducing a greedy solution
to influence maximization with theoretical guarantees. To evaluate the performance of
the algorithm, the quality of the produced seed set is determined by a set of unseen
cascades from future time steps, similar to a train and test split in machine learning. We
consider this assessment strategy more reliable than traditional evaluations based on
simulations as it relies on real traces of influence.

5.2.1 Learning Influencer Vectors

The first part of the methodology deals with INFECTOR, a multi-task learning model
that captures simultaneously the influence between nodes and the aptitude of a node to
create massive cascades.
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node-context extraction. We aim to design a model that learns representations
suitable for scalable model-independent influence maximization. We start from the
context creation process that produces the input to the network. In previous node-to-
node influence learning models, initiating a cascade is considered equally important with
participating in a cascade created by someone else [Fen+18]. Thus, the context of a node
is derived by the nodes occurring after it in a cascade. This process requires the creation
of the propagation network, meaning going through every node in the cascade and
iterating over the subsequent nodes to search for a directed edge in the network—a time-
consuming procedure. To overcome this challenge, we focus on the nature of influence
maximization, where the ultimately selected seed users must exert influence over other
nodes. Consequently, we can accelerate the process by leveraging the differences between
influencers and simple users in terms of characteristics in sharing content. We argue that
an influencer’s strength lies in the cascades she initiates and evaluate this hypothesis
through an exploratory analysis. To validate our hypothesis, we utilize the cascades of
Sina Weibo, a large-scale social network accompanied by retweet cascades. The dataset
is split into train and test cascades based on their time of occurrence, and each cascade
represents a tweet and its set of retweets. We keep the 18K diffusion cascades from the
last month of recording as a test set and the 97K from the previous 11 months as a train
set. We rank all users that initiated a cascade in the test set based on three measures of
success: the number of test cascades they spawn, their cumulative size, and the number
of Distinct Nodes Influenced (DNI) [Du+13; PMM18; PMV18], which is the set of nodes
that participated in these test cascades. We bin the users into three categories based on
their success in each metric, and for each category, we compute the total cascades the
users start in the training set as opposed to those they participate in.

Here, we examine the contrast between the behavior of the influencers and normal
users, meaning how more probable it is for an influencer to start cascades compared to
normal users. As we see in Fig. 5.1, users belonging to the top category of the test set are
much more prone to create cascades than those belonging to the mid and low categories.
Since our end goal is to find influencers for our algorithm, this observation allows us
to focus solely on the initiators of the cascades rather than every node in the cascade.
Moreover, we observe that influencers on Sina Weibo are more prone to create cascades
than participating in them. This means that by overlooking their appearances inside
the cascades of others, we do not lose too much information regarding their influence
relationships, as most of them start the cascades. Thus, for our purpose, the context is
extracted exclusively for the cascade initiator and will be comprised of all nodes that
participate in it. Moreover, we will consider the copying time between the initiator and
the re-poster, based on empirical observation on the effect of time in influence [GBL10].
That way, an influencer u’s context will be created by sampling over all nodes v in a given
cascade Cu that u started, with probability inversely proportional to their copying time.
In this way, the faster v’s retweet is, the more probable it will appear in the context of
u, following this formula P(v|Cu) ∼ (tu−tv)−1

∑v′∈Cu (tu−t′v)−1 . As we will present shortly, this type

of context allows the model to compute diffusion probabilities, i.e., influence between
nodes with more than one hop distance in the network.

the infector model . The diffusion probabilities (DPs) are the basis for our model-
independent approach and exhibit important practical advantages over influence prob-
abilities, as we further analyze below. We use a multi-task neural network [Car97] to
simultaneously learn an influencer’s aptitude to create long cascades and the diffusion
probabilities between her and the re-posters. We chose to extend the typical influence
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Figure 5.1: Influencer’s initiating versus participating in diffusion cascades. ‘DNI’ stands for
distinct nodes influenced, ‘size’ stands for cascade size, and ‘number’ stands for
number of cascades started.

learning architecture in a multi-task learning setting because (i) the problem could natu-
rally be broken into two tasks, and (ii) theoretical and applied literature suggests that
training linked tasks together improves overall learning [EP04].

Given an input node u, the first task is to classify the nodes it will influence and the
second to predict the size of the cascade it will create. Figure 5.2 shows an overview
of the proposed INFECTOR model. There are two types of inputs. The first is the
training set comprised of the node-context pairs. As defined in the previous paragraph,
given a cascade t with length m, we get a set Xt = {(x1, y1

t ), (x
1, y2

t ), . . . , (xm, ym
t )}, where

x ∈ RI and yt ∈ RN are one hot encoded nodes, with I the number of influencers in the
train set and N the number of nodes in the network. The second input of the model
is a similar set Xc, where instead of a vector, e.g., y1

t , there is a scalar y1
c denoting the

length of that cascade, initiated by x1. To perform joint learning of both tasks, we mix
the inputs following the natural order of the data; given a cascade, we first input the
‘influencer-context’ pairs extracted from it and then the ‘influencer-cascade length’ pair,
as shown in Fig. 5.2. Here, O ∈ RI×E, with E being the embeddings size, represents the
source embeddings, Ou ∈ R1×E the embeddings of cascade initiator u, T ∈ RE×N the
target embeddings, and C ∈ RE×1 is a constant vector initialized to one. Note that Ou is
retrieved by multiplying the one-hot vector of u with the embedding matrix O. The first
output of the model represents the diffusion probability pu,v of the source node u for a
node v in the network. It is created through a softmax function with a cross-entropy loss.
The second output aims to regress the cascade length, which has undergone min-max
normalization relative to the rest of the cascades in this set, and hence, a sigmoid function
is used.

The main difference between INFECTOR and similar node-to-node influence learning
methods is that it computes diffusion probabilities and does not require the underlying
social network, in contrast to influence probabilities which are assigned to edges of
the network [BLG16; Fen+18]. Intuitively, diffusion probability is the probability of the
susceptible node appearing in a diffusion started by the influencer, independently of
the two nodes’ distance in the graph. This means that the underlying influence paths
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Figure 5.2: Schematic representation of the INFECTOR model. Given the cascade, a sequence of
pairs is extracted, each pair consisting of the initiator node x (one-hot embedding),
which is the input, and one of the “infected” nodes yt, i.e., e, b, etc. which is the
output. The last pair is the initiator and the cascade size yc, i.e., 4 as output. After the
initiator’s embedding lookup through the origin embeddings O, the vector passes
through T and ft if the output is another node or through C and fc if the output is
scalar. The loss functions are log-loss Lt for node output or mean squared error Lc for
scalar output.

from the seed to the infected node are included implicitly, which changes drastically
the computation of influence spread. Please note that our method is ultimately geared
towards influence maximization, which is why we emphasize the activity of influencers
and overlook the rest of the nodes. If our objective was a purely predictive task, such as
predicting the cascade size or the next infected node, the effectiveness of our learning
mechanism would not be evident.

5.2.2 Influence Maximization with Influencer Vectors

In the second part of the methodology, we aim to perform fast and accurate influence
maximization using the representations learned by INFECTOR and their properties. Ini-
tially, we will use the combination of the embeddings that form the diffusion probability
of every directed pair of nodes. The diffusion probabilities derived from the network can
define a matrix

D =




ft(O1T)
...

ft(OI T)


 , (5.1)

which consists of the nodes that initiate train cascades (influencers) in one dimension and
all susceptible nodes in the other. Even though influencers are fewer than the total nodes,
D can still be too memory-demanding for real-world datasets. To overcome this, we can
keep the top P% influencers based on the norm of their influencer embedding |Ou| to
reduce space, depending on the device. Recall that, the embeddings are trained such
that their norm captures the influencers’ potential to create lengthy cascades because
OuC = ∑E

i Ou(i) = |O| since C is constant. Subsequently, D can be interpreted as
a bipartite network where the left side nodes are the candidate seeds for influence
maximization, and each of them can influence every node on the right side where the
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rest of the network resides. Since all edges are directed from left to right, no paths with
lengths more than one exist. This means that the probability of an edge can only define
the infection of one node, and it is independent of the infection of the rest—hence, we do
not require a diffusion model to estimate the spread.

To formulate the influence spread, we will leverage the embedding of a candidate seed
u to compute the fraction of nodes that is expected to influence:

λu =

⌈
N

||Ou||2
∑u′∈I ||Ou′ ||2

⌉
, (5.2)

where I is the set of candidate seeds. The term resembles the norm of u relative to the
rest of the influencers and the network size. It is basically computing the amount of the
network u will influence. Since a seed s can influence a certain number of nodes, we can
use the diffusion probabilities to identify the top λs nodes it connects to. Moreover, we
must consider the diffusion probability values to avoid selecting nodes with big λs but
an overall small probability of influencing nodes. Consequently, the influence spread is
defined by the sum of the top λs diffusion probabilities as

σ′(s) =
λs

∑
j

D̂s,j, (5.3)

where D̂s are the diffusion probabilities of seed s sorted in descending order. As
mentioned above, once added to the seed set, the seed’s influence set is considered
infected and removed from D. This means that a seed’s spread will never get bigger in
two subsequent rounds. Thus, in the proposed IMINFECTOR algorithm, we employ the
CELF trick [Les+07] to accelerate our computation. Celf is an improved version of the
Greedy algorithm for influence maximization that exploits the property of submodularity
to select seed nodes efficiently. By maintaining a sorted list of nodes based on their
influence spread, Celf identifies the best node with the highest marginal gain in each
iteration, resulting in significantly faster execution times without sacrificing effectiveness.
We further prove that the influence spread function is monotonic and submodular, thus
retaining the theoretical guarantees of the Greedy algorithm by Kempe et al. [KKT03]. A
detailed description of the IMINFECTOR algorithm is given in the corresponding article
[PMV22].

5.2.3 Experimental Evaluation of IMINFECTOR

datasets . We have used three real-world graphs accompanied by ground-truth
diffusion cascades. Digg is a social network with 280K nodes, 2.2M edges, and 3.5K
cascades with an average cascade size of 847 [LG10]. MAG is a co-authorship network
from Microsoft Academic Graph, having 1.4M nodes, 15.9M edges, and 181K cascades
with an average size of 29 [Qiu+18a]. Finally, Seina Weibo is a social network (similar to
X, formerly called Twitter) with 1.1M nodes, 225M edges, and 115K cascades with an
average size of 148 [Zha+13].

baseline models . Most traditional influence maximization algorithms, such as the
Greedy algorithm [KKT03] and Celf [Les+07], do not scale to the networks we have used
here for evaluation. Thus, we employ the following scalable algorithms. K-Core identifies
influential nodes based on the k-core decomposition of a graph [Kit+10; MRV16; Mal+20].
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Figure 5.3: Time comparison of different models. Methods that could not scale to the dataset size
are marked with X.

Avg-Cascade-Size seeks the top nodes based on the average size of their cascades in
the train set [Bak+11]. SimPath is a heuristic that capitalizes on the locality of influence
pathways to reduce the cost of simulations in the influence spread [GLL11b]. Imm is
a scalable algorithm based on reachable sets with theoretical guarantees regarding the
influence spread [TSX15]. Credit-Distribution uses cascade logs and the network edges
to assign influence credits and derive a seed set [GBL11]. Finally, we use Celfie [PMV20],
a previous version of IMINFECTOR, which relies on the Inf2Vec model [Fen+18] to
perform influence learning.

Comparing graph-based algorithms such as SimPath and Imm to models that use both
the graph structure and cascades is not a fair comparison, as the latter exploits more
information. To make the comparison equitable, each graph-based method is coupled
with two influence learning approaches, based on the diffusion cascades, that provide
the influence maximization methods with influence weights on the edges. In the first
one, denoted as Data-Based (DB), assuming that the ‘follow’ edge u → v exists in the
network, the edge probability is set to the number of times node v has copied (e.g.,
retweeted) u, relative to the total activity (e.g., number of posts) of u [GBL10]. The
second approach corresponds to Inf2Vec, a shallow neural network performing influence
learning based on the co-occurrences of nodes in diffusion cascades and the underlying
network [Fen+18].

experimental setup and results . We split the datasets into train and test cas-
cades based on their time of occurrence. The methods utilize the train cascades and/or
the underlying network to define a seed set. The train cascades amount for the first 80%
of the whole set, and the rest is left for testing. The evaluation is two-fold: computational
time and seed set quality, similar to previous literature in influence maximization. We
evaluate the quality of the predicted seed set using the Distinct Nodes Influenced (DNI)
metric, which is the combined set of nodes that appear in the test cascades that are
initiated from each one of the chosen seeds [PMM18; Du+13; PMV18]. Finally, since our
datasets differ significantly in terms of size, we have to use different seed set sizes for
each one. For MAG, which has 205,839 initiators in the train set, we test it on 10,000,
Weibo with 26,158 is tested on 1,000, and Digg with 537 has a seed set size of 50.

Figure 5.3 shows the computational time of the examined methods, separated based
on different parts of the model. Figure 5.4 depicts the estimated quality of each seed
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Figure 5.4: The quality of the seed set derived by each method in different sizes, measured by the
seed set’s number of Distinct Nodes Influenced (DNI) in the test cascades.

set. Regarding quality, we can see that IMINFECTOR surpasses the benchmarks in two
datasets. In Digg, Credit-Distribution performs better but is almost ten times slower
because of the average cascade size in the dataset. All methods could scale in MAG
except for SimPath with Inf2Vec weights because, in contrast to DB, Inf2Vec retains all
the edges of the original MAG network, for which SimPath takes more than one week
to run. Imm’s performance is lower than expected, highlighting the difference between
data-driven means of evaluation and the traditional simulations of diffusion models,
which have been used in the literature due to the absence of empirical data.

In general, we see that IMINFECTOR provides a fair balance between computational
efficiency and accuracy. Most importantly, it exhibits such performance using only the
cascades, while the rest of the baselines use both the graph structure and cascades. Being
unaffected by the network size, IMINFECTOR scales with the average cascade size and
the number of cascades, making it suitable for real-world applications.

5.3 maximizing influence with graph neural networks

This section is based on material from a conference article co-authored with George
Panagopoulos, Nikolaos Tziortziotis, and Michalis Vazirgiannis published in the
IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining
(ASONAM) [Pan+23].

In Sec. 5.2, we formulated an influence maximization method tailored for datasets
with diffusion cascades. Nevertheless, many real-world graphs lack associated ground
truth cascades. Consequently, this section introduces a neural approach to influence
maximization based on diffusion models. In particular, we present Glie, a GNN that
provides efficient influence estimation for a given seed set and a graph with influence
probabilities. It can be used as a standalone influence predictor with competitive results
for graphs up to 10 times larger than the train set. We further leverage Glie for influence
maximization, combining it with Celf [Les+07], which typically does not scale beyond
graphs with thousands of edges. The proposed method runs in graphs with millions of
edges in seconds and exhibits better influence spread than a state-of-the-art algorithm
and previous GNN-based methods for influence maximization. In addition, we propose
Pun, a method that leverages Glie’s representations to compute the number of neighbors
predicted to be uninfluenced, using it as an approximation to the marginal gain. We prove
Pun’s influence spread is submodular and monotone and hence can be optimized greedily
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with theoretical guarantees, in contrast to most prior learning-based methods. The
experimental evaluation indicates that Pun provides a good balance between influence
quality and efficiency.

5.3.1 Influence Estimation with GNNs

Here, we discuss Glie (Graph Learning-based Influence Estimation), a GNN model that
aims to learn how to estimate the influence of seed set S over a graph G = (V , E). Let
A ∈ Rn×n be the adjacency matrix and X ∈ Rn×d be the features of nodes, representing
which nodes belong to the seed set by 1 and 0 otherwise:

Xu =

{ {1}d, u ∈ S
{0}d, u /∈ S . (5.4)

For the analysis that follows, we set d = 1. More dimensions will become meaningful
when we parameterize the problem. If we normalize A by each row, we form a row-
stochastic transition matrix as

A(u, v) = pvu =





1
deg(u)

, v ∈ N (u)

0, v /∈ N (u)
, (5.5)

where deg(u) is the in-degree of node u and N (u) is the set of neighbors of u. Based on
the weighted cascade model [KKT03], each row u stores the probability of node u being
influenced by each of the other nodes that are connected to it by a directed link v → u.
The influence probability p(u|S) resembles the probability of a node u getting influenced
if its neighbors belong in the seed set, i.e., during the first step of the diffusion. We can
use message passing to compute a well-known upper bound p̂(u|S) of p(u|S) for u:

p̂(u|S) = Au · X = ∑
v∈N (u)∩S

1
deg(u)

= (5.6)

∑
v∈N (u)∩S

pvu ≥ 1 − ∏
v∈N (u)∩S

(1 − pvu) = p(u|S), (5.7)

where the second equality stems from the definition of the weighted cascade and the
inequality from the proof in [Zho+15]. As the diffusion covers more than one hop, the
derivation requires repeating the multiplication to approximate the total influence spread.
To be specific, computing the influence probability of nodes not adjacent to the seed
set requires estimating the probability of their neighbors being influenced by the seeds
recursively. If we let H1 = A · X, and we assume the new seed set S t to be the nodes
influenced in the step t − 1, their probabilities are stored in Ht, much like a diffusion in
discrete time. We can then recompute the new influence probabilities with Ht+1 = A · Ht.

Theorem 5.1. The repeated product Ht+1 = A · Ht computes an upper bound to the real
influence probabilities of each infected node at step t + 1.

In reality, due to the existence of cycles, two problems arise. Firstly, if the process
is repeated, the influence of the original seeds may increase, which contrasts with the
independent cascade model. This can be controlled by minimizing the repetitions,
e.g., four repetitions cause the original seeds to be able to reinfect other nodes in a
network with triangles. To this end, we leverage up to three GNN layers. Another
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problem due to cycles pertains to the probability of neighbors influencing each other.
In this case, the product of the complementary probabilities in (5.7) does not factorize
for the non-independent neighbors. This effect was analyzed extensively in [LS19],
showing that the influence probability computed by p(u|S) is an upper bound on the
real influence probability for graphs with cycles. Intuitively, the product that represents
non-independent probabilities is larger than the product of independent ones. This
renders the real influence probability, complementary to the product, smaller than what
we compute.

From the formulation above, we can contend that the estimation p̂(u|S) provides
an upper bound on the real influence probability—and we can use it to compute an
upper bound to the real influence spread of a given seed set, i.e., the total number of
nodes influenced by the diffusion. Since message passing can inherently compute an
approximation of influence estimation, we can parameterize it to learn a function that
tightens this approximation based on supervision. In our neural network architecture,
each layer consists of a GNN. Starting from H0 = X ∈ Rn×d, we have:

Ht+1 = ReLU([Ht, AHt]Wt). (5.8)

The readout function that summarizes the graph representation based on all nodes’
representations is a summation with skip connections:

HG
S = ∑

v∈V
[Hv

0, Hv
1, . . . , Hv

t ]. (5.9)

This representation captures the probability of all nodes being active throughout each
layer. The output that represents the predicted influence spread is derived by:

σ̂(S) = ReLU(HG
SWo). (5.10)

The loss function used here is a simple least squares regression. Note that, in the case
where Wt is an untrained positive semidefinite Gaussian random matrix in [0, 1], the
representations of each layer Hv

t would correspond to the upper bound of the influence
probability of seed set’s t-hop neighbors [LS19]. This upper bound is not retained once
the weights Wt are trained. In our approach, the parameters of the intermediate layers Wt
are trained such that the upper bound is reduced and the final layer Wo can combine the
probabilities to derive a cumulative estimate for the total number of influenced nodes. We
empirically verify this by examining the layer activations seen in Fig. 5.5. The heatmaps
indicate a difference between columns (nodes) expected to be influenced, meaning we
could potentially predict not only the number but also who will be influenced. However,
since σ̂ is derived by multiple layers, the relationships and thresholds to determine the
exact influenced set are not straightforward.

5.3.2 Influence Maximization with Glie

first approach : combine glie with celf . Similar to the IMINFECTOR model
presented in the previous section, we can leverage the Cost Effective Lazy Forward (Celf)
algorithm [Les+07] for influence maximization. Thus, as a first approach, we propose
an adaptation where we substitute the original Celf’s influence estimation component
(based on Monte Carlo simulations) with the output of Glie. Since we do not prove
the submodularity of σ̂, we can not contend that the theoretical guarantee is retained,
so we use this as a heuristic. Celf-Glie has two main computational bottlenecks. First,
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Figure 5.5: A schematic representation of the pipeline. The layers of Glie are depicted by a
heatmap of an actual seed during inference time, showing how the values vary
through different nodes (columns).

it requires computing the initial influence estimation for every node in the first step.
Second, although it alleviates the need to test every node in every step, it still requires
performing influence estimation for at least one node in each step. We aim to alleviate
both limitations in the next paragraph.

second approach : potentially uninfluenced neighbors (pun). Comput-
ing the influence spread of every node in the first step is computationally demanding.
We thus seek a method that can surpass this obstacle and provide adequate performance.
We first utilize the activations mentioned above to define the set of influenced nodes on
the step that corresponds to that layer. Let L̂S , L′

S ∈ {0, 1}n be the binary vectors with 1’s
in nodes predicted to be uninfluenced and nodes predicted to be influenced, respectively:

L̂S = 1

{
d1

∑
i=0

Hi
1 ≤ 0

}
L′
S = 1

{
d1

∑
i=0

Hi
1 > 0

}
. (5.11)

This vector contains a label for each node whose sign indicates if it is predicted to be
influenced. L′

S provides a rough estimate, but it allows for a simpler influence spread,
which we can optimize greedily:

σm(S) = |L′
S |. (5.12)

We can use L̂S and message passing to predict the amount of a node’s neighborhood that
remains uninfluenced, i.e., the Potentially Uninfluenced Neighbors (Pun), weighted by the
respective probability of influence for a node u,

mS [u] = ∑
v∈N (u)

A(u, v)L̂v = A⊤
u · L̂S ∈ Rn×1. (5.13)
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For efficiency, we can compute mS = A⊤ L̂, which can be considered an approximation to
all nodes’ marginal gain on their immediate neighbors. We can thus optimize this using
argmax(mS ), as shown in Fig. 5.5. To establish that σm can be optimized greedily with
theoretical guarantees, we prove its monotonicity and submodularity.

Theorem 5.2. The influence spread σm is monotone and submodular.

Pun can be seen in the left part of Fig. 5.5. We start by setting the first seed as the
node with the highest degree, which can be considered a safe assumption as, in practice,
it is always part of the seed set. We use Glie(S , G) to retrieve L̂S , which we leverage to
find the next node based on argmaxv∈G\S mS [v] and the new L̂S∪{v}. One disadvantage
of Pun is that σm is an underestimation of the predicted influence. Contrasted with the
upper bound of the Dmp (Direct Message Passing) model [LS19], σm is not as accurate as
σ̂, but allows us to compute efficiently a submodular proxy for the marginal gain.

5.3.3 Experimental Evaluation of Glie

Here, we provide an overview of the experimental analysis of Glie on the tasks of
influence learning and maximization. An elaborate list of experiments is presented in the
corresponding article [Pan+23].

influence learning . To train for the influence estimation task, we create a set of
labeled samples, each consisting of the seed set S and the corresponding influence spread
σ(S). We have generated 100 Barabási-Albert [BA99] and Holme-Kim [HK02] undirected
graphs ranging from 100 to 500 nodes. 60% are used for training, 20% for validation, and
20% for testing. The influence probabilities are assigned based on the weighted cascade
model, i.e., a node u has an equal probability 1/deg(u) to be influenced by each of her
N (u) nodes. To label the samples, we run the Celf algorithm using 1,000 Monte Carlo
(MC) simulations for up to 5 seeds. The optimum seed set for sizes 1 to 5 is stored, along
with 30 random negative samples for each seed set size. Each training sample for Glie
corresponds to a triple of a graph G, a seed set S , and a ground truth influence spread
σ(S) that serves as a label to regress on. The random seed sets are used to capture the
average influence spread expected for a seed set of about that size. This creates “average
samples” which would constitute the whole dataset in other problems. In influence
maximization, however, the difference in σ between an average seed set and the optimal
can be significant. Hence, training solely on the random sets would render our model
unable to predict larger values corresponding to the optimum. That is why we added
the samples of the optimum seed set computed using Celf. Besides the small random
graphs presented above (denoted as Test in the experiments), we have evaluated the
model on larger power-law graphs (Large; 1K – 2K nodes) as well as on three real-world
graphs, namely Crime (1K nodes, 3K edges), a biological network HI-II-14 (4K nodes, 16K
edges), and a collaboration network GR Colab (5K nodes, 29K edges).

The real graphs are evaluated for varying seed set sizes, from 2 to 10, to test our
model’s capacity to extrapolate to larger seed set sizes. We have compared the accuracy
of influence estimation to Dmp [LS19]. The average error throughout all datasets and the
average influence can be seen in Table 5.1, along with the average time.

influence maximization. We have considered several influence maximization
baseline models, both algorithms with theoretical guarantees and heuristics. Imm [TSX15]
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Graph (seeds)
Dmp Glie

MAE Time MAE Time

Test (1 – 5) 0.076 0.05 0.046 0.0042
Large (1 – 5) 0.086 0.44 0.102 0.0034

Crime (1 – 10) 0.009 0.11 0.044 0.0029
HI-II-14 (1 – 10) 0.041 2.84 0.056 0.0034

GR Colab (1 – 10) 0.122 4.32 0.084 0.0042

Table 5.1: Average MAE divided by the average influence and time (in seconds) throughout all
seed set sizes and samples, along with the real average influence spread.

Graph Glie-Celf Pun K-Core Pmia DegDisc Imm DeepIS-Celf FINDER

Crime 661 657 647 656 644 650 501.61 642
GR Colab 1,617 1,626 701 1,566 1415 835.40 1,617 1,286

HI-II-14 2,685 2,688 2,540 2,685 2,614 2,668 1602.5 2,625
Enron 17,601 17,614 13,015 17,534 16,500 17,497 - 17,244

Facebook 10,981 10,626 6,434 7,688 10,309 11,007 - 10,801
Youtube 246,439 244,579 110,409 242,057 236,726 247,178 - 50,435

Table 5.2: Influence spread computed by 10,000 simulations of the Independent Cascade model
for 200 seeds.

is based on sketches to approximate the influence spreading, achieving remarkable
performance. Finder [Fan+20] is a reinforcement learning model where the reward is
based on the size of the giant connected component. In particular, each new node (seed)
chosen aims to dismantle the network as much as possible. Pmia [WCW12] computes the
influence spread based on local approximations. DegDisc (Degree Discount) [CWY09]
builds a seed set using the node’s degree, which is recomputed based on the current seed
set and its influence. Finally, the K-Core [Kit+10] model identifies influential spreaders
based on the k-core decomposition of the graph. Regarding the datasets, besides the
ones used above for influence learning, we also consider three real-world social graphs,
namely Enron (34K nodes, 362K edge), Facebook (63K nodes, 1.63M edges), and Youtube
(1.13M nodes, 5.97M edges).

The results for the influence spread of 200 seeds as computed by simulations of the
independent cascade model can be seen in Table 5.2, while the time results are shown
in Tables 5.3 and 5.4 (to have a fair evaluation, we compare algorithms with theoretical
guarantees separately from heuristics). One can see that Glie-Celf exhibits overall
superior influence quality compared to the rest of the methods but is quite slower. Pun
requires only one influence estimation in every step and no initial computation. It
exhibits 3 to 60 times acceleration compared to Imm while its computational overhead
moving from smaller to larger graphs is sublinear to the number of nodes. Regarding
influence quality, Pun is first or second in most datasets, and this effect becomes clearer
as the seed set size increases. DegDisc is faster than Pun in smaller graphs but slower
in larger and overall worse in seed set quality. Pmia provides medium seed set quality
but is computationally inefficient. Imm is not the fastest method, but it is very accurate,
especially for smaller seed set sizes. Finder exhibits the least accurate performance,
which is understandable given that it solves a relevant connectivity problem and not
directly influence maximization. Overall, we can contend that Pun provides the best
accuracy-efficiency trade-off from the examined methods.
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Graph Glie-Celf Pun Imm FINDER

Crime 2.00 0.25 0.19 0.41
Gr Colab 4.55 0.26 0.95 2.36
HI-II-14 2.19 0.27 1.29 1.01

Enron 15.49 0.97 10.47 9.30
Facebook 287.70 3.10 171.25 56.80
Youtube 151.33 28.92 82.13 191.00

Table 5.3: Computational time in seconds (vs.
algorithms).

Pun DegDisc K-Core PMIA

0.25 0.21 0.06 0.04
0.26 0.80 0.13 1.50
0.27 1.36 0.14 0.12
0.97 26.74 2.06 2.17
3.10 22.77 9.29 10.62
28.92 4006.29 54.38 74.91

Table 5.4: Computational time in sec-
onds (vs. heuristics).

5.4 discussion

In this chapter, we examined how graph representation learning can address the problems
of influence learning and maximization in complex networks. We first introduced
IMINFECTOR, a model-independent method to perform influence maximization using
representations learned from diffusion cascades. A basic limitation of the approach
is related to the assumption that the optimum seed set is comprised solely of nodes
that initiate cascades. Besides, due to the absence of multiple datasets with diffusion
cascades, our evaluation was limited to three datasets of varying sizes and characteristics.
Then, we discussed Glie, a GNN-based model for influence estimation, and the derived
models for influence maximization. A practical advantage of a neural approach is the
easy incorporation of complementary information, such as topic or user’s characteristics
[BBM12]. We still need to examine Glie’s behavior with such contextual information.





6P E R S P E C T I V E S A N D F U T U R E R E S E A R C H

T his HDR manuscript has presented an overview of research activities at the in-
tersection of machine learning and network science. The focus was on graph rep-
resentation learning, examining various methodologies and concrete application

domains. Chapter 2 presented random walk node embedding algorithms, emphasizing
expressiveness and scalability. We first examined how the clustering structure of the
graph can enhance node embeddings (Sec. 2.2). Then, we studied flexible embedding
models, either by generalizing the modeling assumptions about node co-occurrences in
random walks (Sec. 2.3) or by leveraging kernel methods (Sec. 2.4). Lastly, this chapter
proposed a scalable embedding algorithm based on hashing techniques (Sec. 2.5).

Chapter 3 focused on representation learning for multilayer graphs, with particular
emphasis on prediction tasks arising in the domain of computational biology. We first
studied simple instances of random walk node embedding techniques extended to
multilayer graphs (Sec. 3.2). Then, we discussed a joint matrix factorization framework
for learning node representations on multilayer graphs (Sec. 3.3). These graph machine
learning models can further facilitate data integration tasks when dealing with multiple
input data sources. Finally, the last part of this chapter introduced a supervised learning
methodology for link prediction in heterogeneous graphs, combining random walks with
matrix factorization (Sec. 3.4). Specifically, we addressed this problem in the context of
predicting missing drug-target interactions in data-driven drug discovery.

Going further, Chapter 4 explored aspects related to Graph Neural Networks. First,
we studied the trade-off between over-smoothing and over-squashing, proposing a
curvature-based algorithm to alleviate both phenomena (Sec. 4.2). Then, we introduced
a hierarchical motif-based pooling operator for GNNs used to compute graph-level
representations (Sec. 4.3). The techniques presented in these sections are theoretically
grounded upon spectral graph theory and network science tools. As a last topic, we
studied the design of explanation models for GNNs (Sec. 4.4).

Finally, Chapter 5 examined applications of graph representation learning in identifying
influential spreaders in complex networks. We first focused on how real diffusion
cascades can be leveraged to learn informative node representations that can later be
used to perform influence maximization (Sec. 5.1). Then, we presented a methodology
that relies on GNNs for efficient influence estimation (Sec. 5.3).

In the following paragraphs, we will conclude this manuscript by discussing ongoing
and future research directions in the broader field of graph machine learning and network
analysis.

graph self-supervised learning . In the absence of labeled data, GNN models
for self-supervised learning constitute a promising new direction, with graph contrastive
learning being of particular interest [Xie+23]. The problem is typically expressed as a
two-step process. First, different graph views are generated via a (handcrafted) data
augmentation process covering both topology and feature transformations. Then, a GNN
model is used to learn representations of the different views. The representations are
then optimized based on a contrastive loss function that pulls together views of positive
samples (e.g., the same node across different views) while pushing apart negative pairs.

87
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Despite the recent progress, most of the proposed models rely on formulations introduced
in computer vision and natural language processing—and often do not fully leverage
crucial graph semantics that could lead to better representations. For instance, observing
an edge between two nodes in a social graph might be due to multiple latent factors
(e.g., individuals sharing the same profession, living in the same city, or studying at the
same university). Disentangling these factors within an augmentation strategy could lead
to representations with improved predictive and generalization capabilities. Moreover,
performing a systematic theoretical analysis toward understanding the limitations of
graph self-supervised contrastive loss functions and their impact on generalization to
new datasets and tasks is an important research direction to explore. Lastly, developing
structure-aware loss functions that directly contrast subgraphs presents an intriguing
direction that diverges from existing approaches. Such a model could be framed around
recent advances in Optimal Transport, including the Fused Gromov-Wasserstein distance
[Vay+19; BM+22].

spatiotemporal graph learning . Several real-world prediction problems involve
spatiotemporal data. Consider, for instance, sensors spread across different geographical
areas measuring environmental conditions (e.g., temperature, pollution) or functional
magnetic resonance imaging (fMRI) data measuring brain activity. Both settings produce
data with inherently rich spatiotemporal structure, which can benefit from the relational
inductive bias of graph-based modeling [Jin+23]. Indeed, considering the structure of
the data, the pairwise relationships between time series can be represented by a graph,
enabling GNNs and other types of graph learning models to be used. In our recent
work, we have introduced a model that allows us to perform time series imputation
with GNNs [CC+23]. A key challenge here is incorporating temporal and relational
smoothness assumptions in the model. Besides, in most cases, the underlying graph
structure is unknown. Although most approaches construct simple k-Nearest Neighbor
(k-NN) or other correlation graphs, learning the graph structure along with the model
parameters remains a challenging problem [Zho+23]. Lastly, enhancing such models with
causal properties to capture causal influence effects among entities constitutes another
interesting direction [Lim+15].

graph machine learning for combinatorial optimization. Solving com-
binatorial optimization problems with machine learning is an emerging area of study
[QCa+23]. In this manuscript, we have examined two such problems, namely graph
clustering (Sec. 4.3) and influence maximization (Sec. 5.3). Apart from the scale of the
graphs considered here, several other challenges must be addressed. First, the algorithms
should capture and reflect the inherent structure of real graphs in the representations.
This was, for instance, the case while designing a GNN model to capture the influence of
nodes within its hidden representations in Chapter 5. Furthermore, the models should
generalize to instances of varying sizes outside the training set (e.g., learn cluster assign-
ments in graph partitioning for the test graph instances). While progress has been made,
further efforts are needed to develop models balancing efficiency, generalization, and
graph structure expressiveness.

geometric gnns . In many practical applications in molecular and chemical systems,
the nodes of the graph have associated geometric attributes (e.g., coordinates) related to
their position in the 3D space. In this context, geometric graphs represent the interaction
of atoms (i.e., nodes) in the 3D space, encapsulating a range of physical symmetries such
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as rotations and translations [Zha+23]. Existing GNN models often overlook this aspect,
making them unsuitable for prediction tasks on geometric graphs. Recently, Geometric
GNN architectures tailored to respect physical symmetries have emerged as flexible
models of atomic systems such as small molecules, proteins, and materials. Nevertheless,
such models often have to balance expressiveness and computational efficiency due to the
requirement to learn invariant or equivariant functions. Our recent work moves towards
this direction, proposing a model where symmetries are preserved through appropriate
data augmentations rather than architectural constraints [Duv+23b]. For an in-depth
exploration of this emerging field and its various challenges, we direct the reader to our
recent survey article [Duv+23a]. Overall, we deem geometric GNNs and geometric deep
learning, in general, a key tool to facilitate scientific discoveries and accelerate research
[Wan+23].

graph generative models . Generating realistic graphs is a longstanding problem
in the graph mining [CF06], network science [LFR08], and machine learning [GZ23]
communities. More recently, the progress in graph representation learning and the
advances in generative models in computer vision and natural language processing
paved the way for a new class of deep graph generative models. Several such models
have been proposed, mainly relying on variational autoencoders, generative adversarial
networks (GANs), normalizing flows, and diffusion models. One of the main challenges
here stands from the discrete nature of graphs. Consider, for instance, the case of diffusion
models in which a noise model progressively corrupts the data (forward process) while
a denoising model strives to invert the process (reverse process) [Liu+23a]. However,
representing the graph in a continuous space where Gaussian noise is added in the
forward process could result in missing the structural properties of the graph [Vig+23].
Other challenges here include multimodal graph generation (e.g., considering textual
and visual features) as well as time-aware graph generation focusing on dynamic graphs.
Overall, the progress in graph generation can be instrumental in a plethora of practical
applications, especially in molecule generation, including drug discovery and materials
science.
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rent Duval, and Fragkiskos D. Malliaros. BraneMF: Integration of Biological Networks
for Functional Analysis of Proteins. Bioinformatics, Oxford University Press, 2022.
(Impact Factor: 6.931.)
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C30. Surabhi Jagtap�, Aurélie Pirayre, Frederique Bidard, Laurent Duval, and Fragkiskos
D. Malliaros. BRANET: Graph-based Integration of Multi-omics Data with Biologi-
cal a priori for Regulatory Network Inference. In Proceeding of the International
Conference on Computational Intelligence Methods for Bioinformatics and Biostatistics
(CIBB), Virtual, 2021.

C29. Alexandre Duval� and Fragkiskos D. Malliaros. GraphSVX: Shapley Value Expla-
nations for Graph Neural Networks. European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Virtual,
2021.
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École Polytechnique, France Oct 2015 - Sep 2016

Postdoctoral Researcher; Computer Science Laboratory (LIX)

Palo Alto Research Center (PARC), USA Jun 2014 - Aug 2014

Research Intern; Interaction and Analytics Laboratory

University of Patras, Greece Sep 2009 - Jan 2012

Research Assistant; Multidimensional Data Analysis and Knowledge Management Group

École Polytechnique, France Feb 2012 - Sep 2015EDUCATION

Ph.D. in Computer Science, Laboratoire d’informatique (LIX)
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Co-supervised with M. Vazirgiannis
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� Abdulkadir Çelikkanat, CentraleSupélec, Paris-Saclay University, Dec ’17 - April ’21
Co-supervised with N. Paragios
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� Vahan Martorosyan, Université Paris-Saclay, with J. Giraldo (internship and master’s thesis, May
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� Nicolas Dunou, Université Paris Dauphine–PSL, with J. Giraldo (internship and master’s thesis,
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� Antoine Siraudin, Sorbonne Université, with J.-C. Pesquet (internship and master’s thesis, Jun ’23-
Nov ’23)

� Alexandre Duval, CentraleSupélec, (internship and master’s thesis), Jun ’20-Nov ’20
� Chayma Bouzelfa, École Polytechnique de Tunisie, with J.-C. Pesquet (internship and master’s the-
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� George Panagopoulos, École Polytechnique, with M. Vazirgiannis (internship, Jun ’18-Dec ’18)
� Duong Nguyen, UC San Diego (independent study, Apr ’17-Dec ’18)
� Balasubramaniam Srinivasan, UC San Diego (independent study, Apr ’17-Sep ’17)
� Konstantinos Skianis, ENS Cachan (internship and master’s thesis, Apr ’15-Sep ’15)
� Bowen Shi, ENSTA ParisTech and UPMC (internship and master’s thesis, Apr ’16-Sep ’16)
� Laurent Nieuviarts, École Polytechnique (internship and master’s thesis, Apr ’16-Sep ’16)
� Marc Mitri, École Polytechnique (internship and master’s thesis, Apr ’15-Sep ’15)
� Maria-Evgenia Rossi, École Polytechnique (main advisor: M. Vazirgiannis; Feb ’14-Nov ’17)
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Other Students (Semester project, undergrad internship, research track)

� Théo Saulus (CS, Oct ’23-Mar ’24) � Ali Ramlaoui (CS, Oct ’23-Mar ’24)
� Basile Terver (l’X, Oct ’23-Mar ’24)
� Mouad Aderdor (CS, Oct ’22-Mar ’23) � Salah Eddine Azekour (CS, Oct ’22-Mar ’23)
� Simon Rouard (CS, Oct ’21-Mar ’22) � Antonin Gagneré, CS (Oct ’21-Mar ’22)
� Elias Aouad (CS, Oct ’20-Mar ’21) � Hugo Schnoering, CS (Oct ’20-Mar ’21)
� Yassine Abbahaddou (CS, Oct ’20-Mar ’21) � Othmane Jebbari (CS, Oct ’20-Mar ’21)
� Othmane Aitboumlik (CS, Oct ’20-Mar ’21), � Rémi Castera (l’X, May ’20-Aug ’20)
� Mohamed Ali Kammoun (ENSTA, Jun ’19-Aug ’19) � Randa Elmrabet (CS, Oct ’19-Mar ’20)
� Tarmach Oumani (CS, Oct ’19-Mar ’20) � Yassine Yahyaoui (CS, Oct ’19-Mar ’20)
� Simon Brandeis (CS, Oct ’19-Mar ’20 � Adrian Jarret (CS, Oct ’19-Mar ’20)
� Pierre Sevestre (CS, Oct ’19-Mar ’20) � Adrien Benamira(CS, Oct ’18-Mar ’19)
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� Tommaso Chiara (CS, Oct ’18-Mar ’19) � Adrien Seguret (CS, Oct ’18-Mar ’19)
� Lorenzo Gasparollo (CS, Oct ’18-Mar ’19) � Etienne Lesot (CS, Oct ’18-Mar ’19)
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Research Engineers
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Dissertation Committee Member

� Andrea Mastropietro, Sapienza Univerity of Rome (advised by: Aris Anagnostopoulos, expected
defense date: Feb ’24)

� Arpit Merchant, University of Helsinki (advised by: Michael Mathioudakis, defense date: Sep ’20)
� Jun Zhu, CentraleSupélec, Paris-Saclay University (advised by: Céline Hudelot and Paul-Henry

Cournède, defense date: Mar ’23)
� Jhony Giraldo, La Rochelle Université (advised by: Thierry Bouwmans, defense date: Sept ’22)
� Rongyan Zhou, CentraleSupélec. Paris-Saclay University (advised by: Julie Le Cardinal, defense

date: Apr ’21)
� Elham Alghamdi, University College Dublin (advised by: Derek Greene, defense date: Nov ’20)
� Choe Adam, CentraleSupélec, Paris-Saclay University (advised by: Paul-Henry Cournède, defense

date: Apr ’19)

FUNDING � ANR RHU grant (Recherche Hospitalo-Universitaire en Sante) Mar 2024 - Feb 2029
INNOV4-ePiK: Innovative diagnostic and therapeutic approaches in potassium channel developmental and
epileptic encephalopathies (K-DEEs) using 4P for medicine
PI: Rima Nabbout (Imagine Institute of Genetic Diseases); co-PI: Fragkiskos Malliaros (11 partners
in total)
Total: 340,000e

� Visiting professor mobility grant, Sapienza University of Rome Apr 2022 - May 2022
Network Science Analytics for the Internet of Things
PI: Ioannis Chatzigiannakis (Sapienza Univ. of Rome); co-PI: Fragkiskos Malliaros
Total: 5,000e

� DATAIA Institute Jan 2022 - May 2022
Mobility grant to support the visit of a Ph.D. student to CentraleSupélec
PI: Fragkiskos Malliaros
Total 5,000e

� Labex DigiCosme Nov 2021 - Oct 2024
GratifAI: Graph Enhancement for Robust Representation Learning and Applications
Type: Ph.D. grant
PI: Fragkiskos Malliaros, Thomas Bonald (Télécom Paris)
Total: 120,000e

� ANR JCJC grant (French National Research Agency) Mar 2021 - Feb 2025
GraphIA: Scalable and Robust Representation Learning on Graphs
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PI: Fragkiskos Malliaros
Total: 225,000e

� Thales Group Oct 2020 - Sep 2023
Neural Networks for Safety of Complex Systems
Type: Ph.D. grant
PI: Jean-Christophe Pesquet (CentraleSupélec); co-PI: Fragkiskos Malliaros
Total: 150,000e

� DATAIA Institute 2019 - 2022
UltraBioLearn: Machine Learning for the Identification and Validation of Prognostic and Predictive Biomark-
ers in Immunotherapy
PI: Hugues Talbot (CentraleSupélec); co-PI: Nathalie Lassau (Université Paris-Saclay), Fragkiskos
Malliaros
Total: 212,000e

� SNCF (French National Railway Company) Nov 2019 - Mar 2020
PLATIPUS: Preliminary Study of Machine Learning to Determine the Scouring Risk of SNCF’s Infrastruc-
ture
PI: Fragkiskos Malliaros, Maria Vakalopoulou (CentraleSupélec)
Total: 20,000e

� CentraleSupélec Research Department Jun 2019 - Jul 2019
Grant to support the scientific visit of invited professor
PI: Fragkiskos Malliaros; co-PI: Apostolos Papadopoulos (Aristotle Univ. of Thessaloniki)
Total: 6,400e

� IFP Energies nouvelles Jan 2019 - Dec 2021
Graph-based Learning from Integrated Multi-omics and Multi-species Data
Type: Ph.D. grant
PI: Fragkiskos Malliaros; co-PI: Jean-Christophe Pesquet (CentraleSupélec)
Total: 150,000e

� SNCF – Railenium 2018 - 2019
SIARA: A Fully Automatic, Accurate and Efficient System for Monitoring the Railway Network
PI: Fragkiskos Malliaros, Maria Vakalopoulou (CentraleSupélec), Nikos Paragios (CentraleSupélec)
Total: 180,000e

SELECTED INVITED
TALKS

� Graph Machine Learning and Biomedical Application
◦ Board of European Students of Technology (BEST), France April 2023

� Graph Representation Learning: Matrix Factorization and Random Walks
◦ DTU Compute, Technical University of Denmark Aug 2022

� Learning Graph Representations with Random Walks: Models and Applications
◦ Dept. of Computer, Control and Management Eng., Sapienza University of Rome, Italy May 2022
◦ Aristotle University of Thessaloniki, Greece (Online) Apr 2021

� Machine Learning on Heterogeneous, Text-Rich Information Networks
◦ Rakuten Institute of Technology, Rakuten Inc., France (Online) Nov 2020

� Machine Learning in Network Science and Applications
◦ Booking.com, The Netherlands (Online) May 2020
◦ IFP Energies nouvelles, France Mar 2020
◦ Congrès Scientifique du Campus de Saclay, France Mar 2019

� Mining Social and Information Networks
◦ Paris Descartes University, Paris, France May 2018
◦ AI Seminar, UC San Diego, San Diego, CA Oct 2016
◦ Télécom ParisTech, Paris, France Jun 2016
◦ Yale School of Management, Yale University, New Haven, CT (Online) Apr 2016
◦ NEC Laboratories Europe, Heidelberg, Germany Apr 2016
◦ Senseable City Laboratory, MIT, Cambridge, MA (Online) Mar 2016

� Degeneracy-Based Mining of Social and Information Networks
◦ Complex Networks Team, Pierre and Marie Curie University, Paris, France Apr 2016
◦ CCNR, Network Science Institute, Northeastern University, Boston, MA Mar 2016
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� Mining Social and Information Networks: Dynamics and Applications
◦ Computational Social Science, ETH Zürich (Online) Dec 2015
◦ Bell Labs, Alcatel-Lucent, Dublin, Ireland Oct 2015

� Predicting Quitting Behavior in Enterprise Social Networks
◦ Palo Alto Research Center (PARC), Palo Alto, CA Aug 2014

� To Stay or Not to Stay: Modeling Engagement Dynamics in Social Graphs
◦ Google Zürich, Doctoral Fellowship Forum Sep 2013

Journal EditorPROFESSIONAL
SERVICE � Associate Editor, Elsevier Big Data Research 2024 - present

� Guest Editor, International Journal of Data Science and Analytics (JDSA), Springer 2024
Special issue on Theoretical and Practical Data Science and Analytics

Organizing Committee

� Journal track co-chair, IEEE DSAA 2024, San Diego, CA, 2024
11th IEEE International Conference on Data Science and Advanced Analytics

� Special session on "GraDSci: Graph Data Science and Applications"
10th IEEE International Conference on Data Science and Advanced Analytics (DSAA), Thessaloniki, Greece, 2023

� Demonstration co-chair, ECML-PKDD, Grenoble, France, 2022
� 15th International Workshop on Graph-Based Natural Language Processing (TextGraphs)

Co-located with NAACL, Mexico City, 2021

� 14th International Workshop on Graph-Based Natural Language Processing (TextGraphs)
Co-located with COLING, Barcelona, 2020

� Special session on "Machine Learning with Graphs: Algorithms and Applications"
International Conference on Artificial Neural Networks 2019 (ICANN), Munich, 2019

� 4th International Workshop on Deep Learning for Graphs and Structured Data Embedding
Co-located with The Web Conference (WWW), San Francisco, CA, 2019

� 3rd International Workshop on Learning Representations for Big Networks (BigNet)
Co-located with The Web Conference (WWW), Lyon, France, 2018

� 2017 Information Theory and Applications Workshop (ITA), San Diego, CA, 2017
� Special Session on "Natural Language Processing for Social Media Analysis"

Co-located with the 19th International Conference on Speech and Computer (SPECOM), Hatfield, UK, 2017

� 2nd International Workshop on Data Science for Social Media and Risk (SoMeRiS)
Co-located with the IEEE International Conference on Data Mining (ICDM), Barcelona, Spain, 2016

Recent Program Committee Member
International Conference on Learning Representations (ICLR), 2021-present; International Confer-
ence on Machine Learning (ICML), 2019 - present; Conference on Neural Information Processing
Systems (NeurIPS), 2018 - present; The Web Conference (WWW): 2018 - present; AAAI Conference
on Artificial Intelligence (AAAI): 2017, 2018, 2020, 2021; Internation Conference on Web and Social
Media (ICWSM): 2019, 2021; European Conference on Machine Learning (ECML-PKDD), 2020 -
present

Journal Reviewer
ACM Transactions on Knowledge Discovery from Data (TKDD), IEEE Transactions on Knowledge
and Data Engineering (TKDE), Data Mining and Knowledge Discovery (DAMI), Applied Network
Science, Springer, Computer Vision and Image Understanding (CVIU), Social Network Analysis
and Mining (SNAM), Intelligent Data Analysis (IDA), Information Retrieval (Springer), Pattern
Recognition (Elsevier)
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[Pal+05] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. Uncovering
the overlapping community structure of complex networks in nature and
society. Nature 435 (2005), p. 814 (cited on page 10).

[PM21] George Panagopoulos and Fragkiskos D. Malliaros. Influence Learning and
Maximization. In ICWE, 2021, pp. 547–550 (cited on page 72).

[PMV18] George Panagopoulos, Fragkiskos D. Malliaros, and Michalis Vazirgiannis.
DiffuGreedy: An Influence Maximization Algorithm Based on Diffusion
Cascades. In Complex Networks, 2018 (cited on pages 74, 78).

[PMV20] George Panagopoulos, Fragkiskos D. Malliaros, and Michalis Vazirgiannis.
Influence Maximization Using Influence and Susceptibility Embeddings. In
ICWSM, 2020, pp. 511–521 (cited on pages 3, 5, 71, 73, 78).

[PMV22] George Panagopoulos, Fragkiskos D. Malliaros, and Michalis Vazirgiannis.
Multi-Task Learning for Influence Estimation and Maximization. IEEE Trans.
Knowl. Data Eng. 34:9 (2022), pp. 4398–4409 (cited on pages 3, 5, 71, 73, 77).

[Pan+23] George Panagopoulos, Nikolaos Tziortziotis, Michalis Vazirgiannis, and
Fragkiskos D. Malliaros. Maximizing Influence with Graph Neural Net-
works. In ASONAM, 2023 (cited on pages 3, 5, 71, 79, 83).

[PRF23] Siddharth Patwardhan, Filippo Radicchi, and Santo Fortunato. Influence
maximization: Divide and conquer. Phys. Rev. E 107 (5 2023), p. 054306 (cited
on page 72).

[Ped+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research 12 (2011),
pp. 2825–2830 (cited on pages 21, 27, 38).

[PMM18] Sen Pei, Flaviano Morone, and Hernán A Makse. Theories for influencer
identification in complex networks. In Complex Spreading Phenomena in Social
Systems, 2018, pp. 125–148 (cited on pages 73, 74, 78).

[PW10] Ofir Pele and Michael Werman. The Quadratic-Chi Histogram Distance
Family. In ECCV, 2010, pp. 749–762 (cited on page 24).

[PARS14] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: Online Learn-
ing of Social Representations. In KDD, 2014, pp. 701–710 (cited on pages 2,
8, 10, 21, 35).
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neurones en graphes, fouille de graphes, science des réseaux

résumé : Les graphes, également appelés réseaux,
sont des structures de données largement utilisées
pour modéliser des systèmes complexes dans divers
domaines, des sciences sociales à la biologie et à
l’ingénierie. Leur force réside dans leur capacité à
représenter les relations entre entités, telles que les
amitiés dans les réseaux sociaux ou les interactions
protéines dans les réseaux biologiques. En plus de
leurs capacités de modélisation, les graphes offrent un
cadre mathématique qui sert à analyser, comprend-
re et faire des prédictions à partir d’ensembles de
données du monde réel. Ce manuscrit HDR présente
une partie de mes contributions de recherche dans le
domaine de l’apprentissage, des représentations des
graphes et de ses applications à la science des réseaux.
Il présente les travaux menés après avoir rejoint Centra-

leSupélec, Université Paris-Saclay en 2017. La première
partie du manuscrit analyse les techniques de plon-
ger les nœuds en préservant la structure qui utilisent
les marches aléatoires. La deuxième partie aborde le
défi du développement des modèles d’apprentissage
de représentation pour les graphes multicouches et
hétérogènes, en soulignant les applications issues du
domaine de la biologie computationnelle. La troisième
partie se focalise sur la conception de modèles des
reseaux de neurones en graphes expressifs et explica-
bles. Finalement, la dernière partie étudie l’application
de l’apprentissage de la représentation de graphe afin
d’aborder les problèmes de l’apprentissage et de la
maximisation de l’influence sociale dans des réseaux
complexes.

title : A Machine Learning Tour in Network Science

keywords : Graph machine learning, graph representation learning, graph neural networks, graph mining,
network science

abstract : Graphs, also known as networks, are
widely used data structures for modeling complex sys-
tems in various fields, from the social sciences to biolo-
gy and engineering. The strength lies in their ability to
represent relationships between entities, such as friend-
ships in social networks or protein interactions in bio-
logical networks. In addition to their modeling capabi-
lities, graphs offer a mathematical framework to analy-
ze, understand, and make predictions from real-world
datasets. This HDR manuscript presents part of my
research contributions to the field of graph representa-
tion learning and its applications in network science,
focusing on the work conducted after joining Centrale-

Supélec, Université Paris-Saclay in 2017. The first part
of the manuscript explores structure-preserving node
embedding techniques that leverage random walks.
The second part addresses the challenge of developing
graph representation learning models for multilayer
and heterogeneous graphs, with a specific focus on
applications arising from the domain of computational
biology. The third part delves into the design of expres-
sive and explainable graph neural network models. Fi-
nally, the last part investigates the application of graph
representation learning to tackle the well-studied pro-
blems of social influence learning and maximization in
complex networks.
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