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Abstract

Motivation: The cellular system of a living organism is composed of interacting bio-molecules that control cellular
processes at multiple levels. Their correspondences are represented by tightly regulated molecular networks. The
increase of omics technologies has favored the generation of large-scale disparate data and the consequent demand for
simultaneously using molecular and functional interaction networks: gene co-expression, protein–protein interaction
(PPI), genetic interaction, and metabolic networks. They are rich sources of information at different molecular
levels, and their effective integration is essential to understand cell functioning and their building blocks (proteins).
Therefore, it is necessary to obtain informative representations of proteins and their proximity, that are not fully
captured by features extracted directly from a single informational level. We propose BraneMF, a novel random
walk-based matrix factorization method for learning node representation in a multilayer network, with application to
omics data integration.

Results: We test BraneMF with PPI networks of Saccharomyces cerevisiae, a well-studied yeast model organism. We
demonstrate the applicability of the learned features for essential multi-omics inference tasks: clustering, function and
PPI prediction. We compare it to state-of-the-art integration methods for multilayer networks. BraneMF outperforms
baseline methods by achieving high prediction scores for a variety of downstream tasks. The robustness of results is
assessed by an extensive parameter sensitivity analysis.

Availability: BraneMF’s code is freely available at: https://github.com/Surabhivj/BraneMF, along with datasets,
embeddings, and result files.

Supplementary information: Supplementary data are available at Bioinformatics online.

1. Introduction

Comprehensive interpretation of biological mech-
anisms in an organism requires understanding bio-
molecular interactions represented by tightly regulated
molecular networks [40]. The advent of high-throughput
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technologies has introduced enormous disparate omics
data in the scenario, and, in parallel, promising avenues
are paved for their analysis and interpretation [47]. De-
spite the explosion of omics data, functional annotations
are yet to be unveiled, for at least 20% of proteins, even
in model organisms [45]. Hence, novel methods to anal-
yse and obtain significant knowledge from heterogeneous
data are necessary. Analysis of single omics is lim-
ited to correlations, mostly reflecting reactive processes
rather than causative ones. Several studies have shown the
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importance of multi-omics integration over single omics
analysis [40]. Such an approach can provide insights into
the interconnectedness of di� erent bio-molecules (pro-
teins, RNAs, metabolites) and the �ow of biological in-
formation occurring among them. This will enable us to
understand biological mechanisms, for instance, gene reg-
ulation [18, 20], protein function prediction (PFP) [9], or
drug–target identi�cation [28].

In the past years, network approaches have o� ered po-
tential for integrative omics analysis, facilitating a new
era of systems biology [40, 46, 10]. Nevertheless, it is
necessary to obtain informative representations (e.g., em-
beddings) for the nodes in the network (bio-molecules)
and their proximity. Potentially, this would be possible
by modeling biological data as a multilayer network and
learning integrated embeddings that could e� ectively cap-
ture richer features and preserve biological information
from each individual layer. Multilayer network integra-
tion strategies can be classi�ed as early, intermediate or
late integration [25, 14]. In early integration methods,
datasets are combined into a single dataset on which the
model is built and the features are learned. In the late
network integration strategy, a model for each network is
built individually, and these individual network features
are then combined. In intermediate integration, the data is
combined through a joint model inference. Indeed, there
is a great value in developing e� cient intermediate-level
integration approaches [50], capable of handling hetero-
geneous data, providing insights into the functional cat-
egories of proteins (e.g., representation of system-level
inter-relationships within bio-molecules).

In this paper, we are inspired by Graph Representa-
tion Learning (GRL) algorithms to encode graph struc-
ture into compact embedding vectors [17]. Our motiva-
tion is further extended towards leveraging closed forms
of GRL methods that perform implicit matrix factoriza-
tion, favouring intrinsic connection and interpretability of
graph topology [24, 35]. We propose BraneMF, a novel
intermediate-level network integration framework by ef-
fectively combining PPI networks of heterogeneous data
sources. We formally de�ne the task as a multilayer net-
work embedding problem. Given a set of networks, we
aim to learn low-dimensional latent node embeddings so
that the structure of input networks is properly integrated
and preserved in the new space.

More formally, a multilayer graph ofL-layers is a set

G = fGlgL
l=1 = f(V l ;El)gL

l=1 of graphs, whereV l :=
fv1; : : : ;vNl gandEl := fe1l ; : : : ;eMl gare the vertex and the
undirected edges sets respectively.Nl andMl denote the
number of nodes and edges for each layer. Throughout
the paper, we assume that the layers share the same set of
nodes, soV j = V l = V , andN j = Nl = jVj for every
1 � j < l � L. We useA(l) to denote the adjacency matrix
of the associated layerGl . Our main goal is to learn a low-
dimensional feature representation for alljVj nodes. This
integratedd-dimensional representation ofG is given by

 d 2 RjVj� d (d � jVj ). We employ these embeddings
for di� erent downstream prediction tasks dedicated to the
functional analysis of proteins.

2. Related work

A plethora of GRL approaches are based on random
walks [33, 15, 30, 3], matrix factorization [24, 35], or
neural networks [17]. However, they have mostly been
introduced for single-layer networks [47]. Inspired by
Word2Vec-based single-layer network embedding tech-
niques [29, 33, 15], a few GRL methods have been pro-
posed for multilayer networks. Principled Multilayer Net-
work Embedding (PMNE) [26] is an extension of a single-
layer graph embedding to a multilayer network. Multiplex
Network Embedding (MNE) [48] is a multi-layer network
embedding method that generates random walks for each
layer and then applies the Skip-Gram model [29] to learn
joint embeddings for each node. The �nal node embed-
dings are composed of three parts: common embeddings,
relation-based embeddings, and a transformation matrix.
Multi-Net [2] uses random walks, namely classical, dif-
fusive, and physical to obtain node sequences [38, 16].
Then, it merges the nodes' neighborhoods (context for
each node) and learns ad-dimensional feature vector for
each node by maximizing the likelihood of occurrence of
node neighbors across all layers. Multi-node2vec (Multi-
n2v) [44] extends Node2Vec [15] to multi-layer networks.
The model collects a bag of words from each layer by per-
forming vertex neighborhood search. Then, the optimiza-
tion procedure computes the features by using the Skip-
Gram neural network model on the identi�ed neighbor-
hoods. Recently, MultiVERSE [34] computes a similar-
ity matrix using random walk with restart (RWR). Then, it
applies an optimized version of VERSE [42], a vertex-to-
vertex similarity-oriented embedding method to compute
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the representations. FAME [27] decomposes the hetero-
geneous multiplex network into homogeneous and bipar-
tite sub-networks. It follows the use of a spectral transfor-
mation module to automatically aggregate and decouple
sub-networks with the exploration of their multi-relational
topological signals. Lastly, BraneExp [20] is based on
random walks that are used to de�ne node similarity, us-
ing expressive conditional probability functions. It is a
network integration framework with the concept of expo-
nential family graph embeddings, which generalizes mul-
tilayer random walk-based GRL methods to an instance
of exponential family distribution [36, 3].

For biological networks, Similarity Network Fusion
(SNF) [43] constructs a similarity network for each data
type and then iteratively integrates these networks using
a network fusion methodology. Mashup [7] is a network
integration framework based on matrix factorization that
builds compact low-dimensional vector representations of
proteins. It takes as input a collection of PPI networks
and generates embeddings that best explain their wiring
patterns across all networks. deepNF [13] is a network
fusion method relying on multimodal deep autoencoders
(MDA). It also takes a collection of PPI networks as in-
put and makes use of an autoencoder (AE). OhmNet [52]
is an unsupervised feature learning approach for multi-
layer networks with a prede�ned hierarchy describing re-
lationships between the layers. To capture the structural
properties of networks, deepNF and Mashup are based on
Random Walks with Restarts (RWR). The vectors learned
from both methods are then fed into a support vector
machine (SVM) classi�er to predict functional classes
of proteins. deepMNE-CNN [32] has been introduced
as a multi-network embedding approach which applies a
semi-autoencoder based model to learn protein features.
Graph2GO [12] extends variational graph autoencoders
(VGAE) to multilayer networks. It establishes to inte-
grate networks derived from heterogeneous information,
including sequence similarity, protein-protein interaction,
and protein features, amino acid sequence, sub-cellular
location, and protein domains.

Most of these network integration frameworks are en-
grossed towards Gene Ontology (GO) prediction. If two
proteins have a similar function, apart from their direct
relationship in the network, they can have many further
characteristics in common, such as biological processes,
molecular function, cellular location, regulated by the

same transcription factor, have the same epigenetic mark
or belong to the same metabolic pathway. In order to de-
termine such similarities betweena priori unlinked pro-
teins, it is necessary to obtain an informative representa-
tion of proteins and their proximity that is not fully cap-
tured by handcrafted features directly extracted from the
PPI network. GRL-driven models are candidates for the
above tasks. Given a multilayer network, GRL algorithms
can embed it into a new compact vector space in such
a way that both the original network structure and other
latent features are captured. Indeed, existing methods
are challenged when applied to biological datasets that
demand comprehensive handling of data heterogeneity.
Also, existing GRL methods for multilayer networks de-
pend on numerous parameters—thus being computation-
ally intensive in �nding optimal parameter settings. Be-
sides, biologists generally dispose of low levels of ground
truth. To e� ciently search for appropriate ground truth
when biological information is not fully known, becomes
a di� cult and time consuming task. Hence, there is a huge
scope to develop new methods that can address these chal-
lenges. In this study, we derive embeddings purely via a
data-driven fashion such that the probability of the con-
text of a protein is maximized. To do so, we obtain ran-
dom walk-based Positive Pointwise Mutual Information
(PPMI) matrices from the set of networks to capture node
neighborhood information. These matrices are used as in-
put for learning embeddings using a joint singular value
decomposition (SVD) framework. Moreover, we demon-
strate the adequacy of the learned embeddings to solve
important downstream machine learning tasks such as
protein clustering with their functional enrichment, pre-
diction of protein functions and PPIs.

3. Materials and methods

BraneMF is an integration framework to learn protein
features from multiple PPI networks. A schematic repre-
sentation is given in Fig. 1.

3.1. Computation of random walk-based PPMI matrices

Network properties, particularly topological ones, can
unravel important information about the graph structure.
While handling multiple heterogeneous networks that cor-
respond to diverse characteristics, it is essential to extract
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Figure 1: Schematic representation of BraneMF.The framework takes as input a set of PPI networks represented by their adjacency matrices
A(l); l 2 f1; 2; : : : ;Lg. For each PPI network, the random walk matrixM (l) is computed. For integrative analysis, we learn protein features by jointly
decomposing these random walk matricesM (l) into U� (l)V> . The protein features
 d are given byUd(�̄ d)
 , whered is the embedding dimension
and
 is a factor that scales the magnitude of the singular values. The learned protein features are then utilized for functional analysis of proteins.

relevant information concealed in their topology. We aim
to extract such information from a multilayer graphG,
constructing a set of PPMI matrices that can delineate
node similarity via random walks. Random walks, de-
�ned as node paths that consist of a series of random steps
on the graph, have been used as a similarity measure for
a variety of problems in graph theory. More precisely,
from some single-layer graphGl and a starting nodevi ,
a random walk performs transitions by selecting a neigh-
borhood node at random at each step. The random walk
generation procedure continues for all nodes and for a
prede�ned number of walks of a given length. In this
way, node sequences are obtained that are further used
to learn node features. This can be achieved by maxi-
mizing the likelihood of node co-occurrences within ran-
dom walks, following ideas from the Skip-Gram model
in natural language processing (NLP). Nevertheless, for
large networks, simulating random walks is computation-
ally expensive and requires additional parameter settings.
To alleviate this e� ect, recent studies have formulated the
problem of random walk embedding generation as a ma-
trix factorization task [24, 35].

Focusing on a speci�c instance of such approaches, the
DeepWalk method �rst generates a corpusW by perform-
ing random walks on a graph [33]. A corpusW is a
bag of multisets that counts the multiplicity of nodesv
and their contextc. DeepWalk then trains a Skip-Gram
model onW . To be formal, it assumes a corpus of node
sequences represented asv1; v2; : : : ;vN, whereN is the
length of the random walk. The context of nodevi is
given as the surrounding nodes in a 2w-sized window
fvi� w; : : : ;vi� 1; vi+1; : : : ;vi+wg, w < N. Following Levy and
Goldberg [24] and Qiu et al. [35], the closed form expres-
sion of the DeepWalk matrix for any graphGl is given
by:

log
 
#(v; c)jWj
#(v):#(c)

!
� logb
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:

On the left-hand side, #(v; c); #(v), and #(c) denote respec-
tively the number of times node-context pair (v; c), node
v and contextc appear inW , while b is the number of
negative samples. The right-hand side is represented by
D as the degree matrix of graphGl , and the power matrix
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P de�ned asD� 1A. Here, vol(Gl) is the volume (size) of
Gl . For a detailed theoretical explanation, refer to Sec. 2:2
in [35]. Inspired by this formulation, we have chosen to
obtain the set of PPMI matricesM = fM (l)gL

l=1 using the
closed form expression of the DeepWalk matricesM (l) for
a multilayer graphG:

M =

8
>><
>>: log

0
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vol(Gl)

bw

2
666664
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w

wX

r=1

�
P(l)

� r
3
777775
�
D(l)

� � 1
1
CCCCCA

9
>>=
>>;

L

l=1

: (1)

Each matrixM (l) corresponds to the DeepWalk matrix of
Gl when the length of random walks goes to in�nity. In
this regard,M (l) is di� erent from the PPMI matrices com-
puted in previous approaches. As discussed in Sec. 2, the
PPMI matrix for deepNF and Mashup is computed using
Random Walks with Restart (RWR), considering an ad-
ditional parameter that controls the restart probability of
the random walk. Despite both capturing node proxim-
ity, the DeepWalk matrix signi�cantly di� ers from RWR;
the formulation ensures that its latent factors will derive
embeddings that capture node co-occurrences in random
walks.

3.2. Joint representation learning for multilayer net-
works

The set of matricesM computed as above captures
node proximity that still represents high-dimension pro-
tein features. As a consequence of the curse of dimen-
sionality, these features are not compatible for down-
stream prediction tasks. Therefore, we want to obtain
low-dimension integrated protein features that could be
easily fed to any downstream machine learning tasks of
interest. Nevertheless, our integration framework is de-
veloped on the construction of random walk-based PPMI
matrices (Eq. (1)), on which joint matrix factorization
is eventually performed. In order to learn the spectrum
of one layer in graphG, the singular values and singular
vectors of its PPMI matrix̄M can be obtained using SVD,
asM̄ = U� V> , whereU andV correspond to the left and
right singular vector matrices, and� is the diagonal singu-
lar value matrix. In the case of a multilayer graphG com-
posed byL layers, we haveL symmetric PPMI matrices.
As a natural extension, we propose to approximate each
PPMI matrixM (l) by a set of jointly decomposed singu-
lar vector and singular value matrices shared by all layers,

given by:M (l) � U� (l)V> ; l 2 f1; : : : ;Lg: The correspon-
dence above keeps, whereU andV> are orthogonal matri-
ces containing the joint singular vectors and� (l) 2 RjVj�jVj

contains the corresponding singular values in the layerl.
The minimization of the following objective functionO
yieldsU andV:

arg min
U;V2RjVj�jVj

O =
1
2

LX

l=1

kM (l) � U� (l)V> k2
F

+
�
2

(kUk2
F + kVk2

F) +
�
2

kUV> � Ik2
F ;

(2)

whereI 2 RjVj�jVj is the identity matrix, andk � kF de-
notes the Frobenius norm. The �rst term of the objec-
tive functionO measures the overall approximation error
when all layers are decomposed overU. The second term,
the norms ofU andV> , is added to improve numerical
stability for the solutions; and the last term is a constraint
to ensure thatV> is close to the inverse ofU (M (l) is a
symmetric matrix, thus its SVD can be given byU� U� 1).

We solve the problem in Eq. (2) to getU andV> . Since
Eq. (2) is not jointly convex onU andV> , we adopt an al-
ternating scheme to �nd a local minimum forO by �xing
V> �rst and optimizing onU, and vice versa [11]. The
derivatives ofO with respect toU and V> are given in
Eq. (S1) (Supplementary Material (SM)). For nonconvex
optimization, a good initialization is important, and we
suggest to compute the SVD of the mean for all matrices
M (l), and initializeU, � , andV> with the resulting matri-
ces:U is the set of joint singular vectors, namely a joint
spectrum shared by all layers inG, �̄ is the joint singu-
lar value matrix computed by taking the average of� (l)

matrices. The integrated embeddings
 d 2 Rn� d are ob-
tained by multiplying the �rstd columns ofU, Ud 2 Rn� d,
scaled by the
 -th power of the singular value magnitudes,
(�̄ d)
 2 Rd� d:


 d = Ud(�̄ d)
 : (3)

The stopping condition is de�ned by the convergence be-
havior of the cost function—the di� erence between its
values for two consecutive iterations. This optimization
process is similar to [11], that uses an eigendecomposi-
tion to �nd low-rank eigenvector matrices that are shared
by all graph layers. However, these matrices were not ran-
dom walk-based and the joint decomposition is performed
di� erently. The joint SVD process described above is
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essentially based on integrating information from multi-
ple graph layers. It tends to treat each graph equitably,
building a solution that smoothens out speci�cities of each
layer. An overview of BraneMF is given in Algorithm 1
in the SM.

4. Results

4.1. Experimental setup
To substantiate our methodology, we apply it over six

yeast STRING networks. Their relationships are mainly
de�ned by `Neighborhood', `Fusion', `Co-occurrence,
`Co-expression', `Experimental', and `Database'. A brief
overview of the input data and the gene ontology (GO)
terms are given in SM (Table S1) and SM (Table S2),
respectively. LetG be a multilayer network constructed
over jVj = 4;900 proteins. BraneMF depends on three
parameters: embedding sized, Eq. (3), window sizew,
Eq. (1), and weighting factor
 , Eq. (3). Given this
set as input to BraneMF,d-dimensional latent features,

 d 2 RjVj� d, are learned. We have selected nine baselines
in our empirical analysis. Their description and param-
eter selection are provided in SM (Sec. 4). Further, we
investigate the usefulness of the learned embeddings for
various omics inference tasks. Firstly, we perform clus-
tering using the protein features and by GO enrichment
analysis we show the functional relatedness of proteins
in these clusters (Sec. 4.2). Secondly, we design pro-
tein function prediction as a multi-label node classi�ca-
tion problem by training a SVM model. We predict bi-
ological process (BP), molecular function (MF), and cel-
lular component (CC) (Sec. 4.3). Next, we perform PPI
prediction by learning protein features using datasets of
2015 (deepNF and Mashup benchmark datasets) aiming
to predict unseen PPIs which are updated by 2021 [41].
Moreover, we use the computed embeddings from our
dataset to reconstruct the integrated yeast PPI network
provided in STRING database (Sec. 4.4). Note that, for
eachd, we select one embedding �le per model that pro-
vides the best performance for each downstream task. The
respective parameters selection is given in SM (Tables
S4; S5). Lastly, we have also performed parameter un-
certainty analysis, examining the impact of the di� erent
choices ford, 
 , andw. Details are provided in SM (Sec.
8). The experiments and their respective evaluations are
described below.

Method k = 40 k = 60 k = 80 k = 100

SNF 7:2 � 10:2 23:1 � 6:6 15:2 � 2:4 43:1 � 4:1
Mashup 21:5 � 0:6 30:1 � 3:0 38:8 � 0:4 41:9 � 0:4
deepNF 25:7 � 1:7 22:7 � 1:2 26:3 � 1:0 26:2 � 1:1

Multi-Net 20:4 � 2:2 22:5 � 0:5 45:4 � 0:0 45:4 � 0:0
Multi-n2v 16:6 � 2:4 24:7 � 0:9 46:6 � 0:1 46:6 � 0:1

OhmNet 15:1 � 7:2 35:1 � 0:2 45:1 � 0:3 45:1 � 0:4
MultiVERSE 16:4 � 10:4 13:7 � 0:9 20:1 � 0:0 20:4 � 0:0

BraneExp 21:0 � 6:7 41:9 � 1:4 45:4 � 0:0 45:4 � 0:0
Graph2GO 21:3 � 1:7 22:5 � 11:9 25:5 � 11:9 30:4 � 7:7

BraneMF 24:05� 9:3 46:2 � 5:5 48:9 � 4:28 49:5 � 3:38

Table 1:GO enrichment analysis (ES).Performance of BraneMF com-
pared to the baselines, measured by the ES. Standard deviation is com-
puted for 20 runs ofk-means clustering. Bold: best score, underlined:
second best score. Parameters:
 = 1;w = 10;d = 128 for BraneMF,
SM (Sec. 4) for baselines.

4.2. Clustering and GO enrichment of proteins

Proteins are building blocks of a biological system that
facilitate cellular processes. Their discovery, functional
annotation, and characterization are of great importance
[45]. Therefore, we examine the ability of the learned
features
 d to cluster proteins of similar functions. Due
to the large number of proteins (i.e., 4; 900), we choose
higher numbers for clusters, withk 2 f40;60;80;100g.
Our choice of clustering algorithm is thek-means++
[1]. We execute it 20 times to take into account the
randomness in the algorithm. For each of the ob-
tained clusters, we perform Gene Set Enrichment Analy-
sis (GSEA) [39] using the `GOBiological Process2018'
and `GOMolecularFunction2018' libraries of theYeas-
tEnrichr database [23] consisting of 1;649 GO terms. A
cluster is considered to be enriched if, at least, one GO
term in a cluster is signi�cantly enriched (adjusted P-
value < 0:05). For all the signi�cantly enriched clus-
ters, the performance is measured by the enrichment score
(ES) and Z-score [39]. The de�nition of these metrics is
given in SM (Sec. 5). The �nal scores are calculated by
computing the average over the 20 simulations. Similarly,
we evaluate the clusters obtained for the baseline meth-
ods.

GSEA results with ES and Z-score are shown in Tables
1 and S6. The performance of BraneMF measured by ES
is higher fork = 60;80 and 100 compared to the base-
lines. Fork = 40, deepNF achieves higher performance
than BraneMF. Overall, this demonstrates that clusters
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from BraneMF's features can group proteins into more
signi�cantly enriched biological processes for higher val-
ues ofk. Moreover, Multi-node2vec and BraneExp are the
second best-performing methods. The visual representa-
tion of the obtained clusters and their respective enrich-
ment is given in SM (Fig. S1). This is our preliminary
analysis to show the ability of the learned embeddings to
cluster functionally related proteins. Nevertheless, the ex-
tensive analysis with di� erent values ofk could reveal the
optimal k for each model. In the next section, we apply
the learned embeddings to protein function prediction.

4.3. Protein function prediction
In this section, we investigate the reliability of learned

features to predict protein functions. We model the prob-
lem of protein function prediction as a multi-label node
classi�cation task. We use the learned features,
 d, to
train an SVM classi�er and predict probability scores for
each protein. We use the SVM implementation provided
in the LIBSVMpackage [4]. To measure the performance
of the SVM on the embedding vectors, we adopt a 5-fold
cross validation (CV) process [7, 13]. We split all the an-
notated proteins into a training set, comprising of 80%,
and a test set, comprising the remaining 20% ones. We
train the SVM on the training set and predict the func-
tion of the test proteins. We use the standard radial basis
kernel (RBF) for SVM and perform a nested 5-fold cross
validation within the training set to select the optimal hy-
perparameters of the SVM via grid search (i.e.,� in the
RBF kernel and the weight regularization parameterC).
All performance results are averaged over 10 di� erent CV
trials. The evaluation metrics m-AUPR, M-AUPR, ACC,
and F1 used for protein function prediction are mentioned
in SM (Sec. 6:1).

We �rst investigate the added value of integration for
protein function prediction. To do this, we have learned
protein features for each input network and performed
classi�cation. We then compare the performance of the
features learned from individual input networks to the in-
tegrated ones. The evaluation of results is done by com-
puting the F1 score. The results for level I for BP, MF, and
CC are shown in Fig. 2, while the results for levels II and
III are shown in SM (Fig. S2). We observe that integra-
tion outperforms individual network protein function pre-
diction. Also, the `Experimental', `Co-expression', and
`Database' networks demonstrate good performance in all

Figure 2:Integrating multiple networks outperforms individual net-
work. Performance of BraneMF applied on individual yeast STRING
networks, measured by the F1 score. Parameters:
 = 1;w = 10;d =
128. Error bars show the standard deviation across 10 CV trials.

three levels, whereas the `Fusion' network gives the low-
est score. This indicates the importance of the �rst three
networks in the function prediction task, compared to
the `Neighborhood', `Fusion', and `Co-occurrence' net-
works.

Additionally, we have explored three di� erent network
integration strategies namely early, intermediate, and late.
Early integration is performed before the modeling pro-
cess, for example, merging all networks into one. On
the contrary, late integration is done after the modeling
process is applied to each network, and then it concate-
nates the obtained features. BraneMF is an intermedi-
ate integration model where integration is performed in
the learning process of embedding computation. To show
the e� ectiveness of the intermediate level of integration,
we have compared BraneMF with BraneMF-early and
BraneMF-late. In BraneMF-early, the PPMI matrix is
computed from the adjacency matrix of the network ob-
tained by taking the union of all six network layers. Then,
d-dimensional protein features are learned. In BraneMF-
late, the protein features are learned independently for
each layer, and the �nal features are obtained by taking
their average. The performance is evaluated by comput-
ing the F1 score and accuracy metrics. As we can observe
in Fig. 3 and SM (Fig. S3), BraneMF outperforms the
rest integration strategies for all three levels of BP, MF,
and CC. There is an increase of 2% in the accuracy of
BP I when compared to BraneMF-early and an increase
of 10% compared to the BraneMF-late integration model.
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Figure 3:Integration strategies. Performance of BraneMF compared
to early and late integration measured by F1 score. Parameters:
 =
1;w = 10;d = 128. The error bars show the standard deviation across
10 CV trials.

Also, the performance of BraneMF for MF and CC is sig-
ni�cantly higher than BraneMF-early and BraneMF-late
under F1 and ACC scoring schemes. Hence, BraneMF
's improvement can be partially attributed to the fact that
separately computing the random walk matrices of each
individual layer uncovers compressed topological pat-
terns, that are di� cult to identify in the combined net-
work (BraneMF-early model) where di� erent edge types
are not distinguished. Moreover, BraneMF has the advan-
tage over late integration to bene�t from capturing inter-
layer correlation of modalities at the feature level that is
challenging for late integration.

We also compare the performance of BraneMF to the
baseline methods with the validation strategies described
earlier. Table 2 and SM (Tables S7, S8, and S9) show
the classi�cation results for level I, II, and III of BP, MF,
and CC respectively. We observe that protein function
prediction based on BraneMF substantially outperforms
other integration methods in assigning a previously un-
seen protein to its known functional categories in a CV
experiment. For instance, the F1 score for BraneMF
(BP I) is 38:2%, that is 3 points higher than Brane-
Exp and 4:2 points higher than Graph2GO, the second
best-performing method. Whereas BraneMF correctly as-
signed 26% of proteins (on average) to BP I category, in
contrast to 24:9% for Graph2GO and 22% for BraneExp.
Similarly, BraneMF consistently outperforms the base-
lines for level II and level III.

Method BP I MF I CC I

SNF 0:199� 0:01 0:104� 0:00 0:206� 0:01
Mashup 0:271� 0:0 0:263� 0:02 0:520� 0:02
deepNF 0:341� 0:01 0:342� 0:02 0:564� 0:02

Multi-Net 0:335� 0:01 0:353� 0:02 0:532� 0:02
Multi-n2v 0:331� 0:01 0:323� 0:01 0:511� 0:01

OhmNet 0:321� 0:01 0:300� 0:01 0:512� 0:01
MultiVERSE 0:312� 0:01 0:294� 0:01 0:502� 0:02

BraneExp 0:352� 0:01 0:368� 0:01 0:548� 0:03
Graph2GO 0:340� 0:01 0:355� 0:01 0:564� 0:02

BraneMF 0:382� 0:01 0:392� 0:02 0:615� 0:02

Table 2:Protein function prediction. Performance of BraneMF, com-
pared to baseline methods using the F1 score. Parameters:
 = 1;w =
10;d = 128 for BraneMF, SM (Sec. 4) for baselines. The standard devi-
ation is computed based on 10 CV trials. Bold: best score, underlined:
second best score.

4.4. Protein-Protein interaction (PPI) prediction

The interactome is the complete map of PPIs that can
occur in an organism. It is still an open question whether
a complete interactome of any organism will ever be dis-
covered by experimental techniques [21]. Therefore, pre-
dictive methods have become more popular in systems bi-
ology to reveal the wiring patterns of proteins. E� ective
integration of PPIs from di� erent data sources (experi-
mental and/or computational) can help us to have a near
complete set of interactome [21]. In this task, our goal is
to predict the missing (unseen) PPIs (edges) between pro-
teins (nodes) using the learned features. We use PPIs from
the 2015 and 2021 STRING networks to form training and
test sets, respectively. We form the positive training set
from PPIs that did not change from 2015 to 2021, and the
positive test set from the PPIs that did not exist in 2015 but
gained existence in 2021. The same number of PPIs that
do not exist in both networks are sampled to generate neg-
ative instances for each training and test sets respectively.
The learned embeddings (Sec. 3) of proteinu andv, given
as
 d[u] and 
 d[v], are converted into edge feature vec-
tors by applying the coordinate-wise Hadamard product
or cosine similarity operations [15]. De�nitions of these
operations are given in SM (Sec. 7.1). We perform the
prediction task using logistic regression classi�er with L2
regularization. The performance of PPI prediction is eval-
uated based on AUROC (area under the Receiver Op-
erating Characteristic curve) and AUPR (area under the
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Method AUPR-H AUROC-H AUPR-C AUROC-C

SNF 0:637 0:628 0:575 0:559
Mashup 0:757 0:743 0:712 0:707
deepNF 0:764 0:747 0:490 0:480

Multi-Net 0:735 0:724 0:490 0:480
Multi-n2v 0:526 0:528 0:511 0:509

OhmNet 0:513 0:514 0:516 0:516
MultiVERSE 0:500 0:501 0:501 0:501

BraneExp 0:777 0:760 0:683 0:680
Graph2GO 0:721 0:757 0:502 0:498

BraneMF 0:783 0:747 0:725 0:682

Table 3:PPI prediction performance. Performance of BraneMF, com-
pared to the baseline methods, measured by the AUROC and AUPR
for the edge features computed by coordinate-wise operations given by
Hadamard product (-H) and cosine similarity (-C). Bold: best score, un-
derlined: second best score. Parameters:
 = 1;w = 10;d = 128 for
BraneMF, SM (Sec. 4) for baselines.

Precision-Recall curve). The results are shown in Table 3.
We observe that BraneMF has competitive and consistent
behavior across almost all evaluation metrics for the PPI
prediction, achieving 1:5% higher performance (AUPR-
H) than BraneExp which is the second best performing
model. deepNF and Mashup also perform well under spe-
ci�c evaluation metrics.

Additionally, we reconstructed the yeast STRING net-
work using the learned representations. The details are
provided in SM (Sec. 7:2). The respective results are
shown in SM (Fig. S4). Here, we observe that BraneMF
outperforms all baseline models for both evaluation met-
rics. For the top 1;000 edges, notably all the baseline
methods except SNF, give 100% of Precision. When
we increase the number of edges to 1 million, BraneMF
and Multi-node2vec continue to show higher performance
when compared to the baseline models.

5. Discussion

The wide availability of omics data has driven the need
for the development of novel integrative methods that can
properly analyse and interpret them. We have presented
BraneMF, an integrative framework for analyzing the
topology of multiple protein-protein interaction networks
towards extracting relevant protein features from hetero-
geneous data sources. BraneMF performs integration of
multilayer biological networks with the concept of joint

matrix factorization, that generalizes random walk-based
network embedding models. More precisely, BraneMF
brings the best of two worlds: expressiveness of the well-
celebrated random walk-based embedding models (e.g.,
DeepWalk [33], node2vec [15]) and the solid formulation
of matrix factorization—going further by extending them
to integrate multiple sources. We have demonstrated the
wide applicability of BraneMF in exploiting functional
analysis of proteins in PPI networks by studying the qual-
ity of clusteredness of functionally related proteins, the
accuracy of predicting protein functions, and the infer-
ence of interactions in the reconstruction of the yeast in-
teractome. Besides, while comparing against nine other
baseline models, BraneMF has shown competitive per-
formance in all downstream assessments. In a modeling
framework that integrates multiple sources, it is impera-
tive to de�ne the uncertainty of the model's predictions.

We have performed sensitivity analysis for three pa-
rameters, namely
 , w, andd that BraneMF depends on.
The embedding size range is consistent with the current
literature. The selected sizes of the embedding vectors
are f128;256;512;1024g for BraneMF and all the base-
line models. Also,w and 
 are given asf2;4;6;8;10g
and f0;0:25;0:50;0:75;1g, respectively. The details are
presented in SM (Sec. 8). We observed that BraneMF
performs relatively consistently, even with smaller dimen-
sion sizes i.e., 128. For other networks with a smaller or
larger number of nodes, the embedding dimensions used
are mostly selected empirically. The trade-o� is between
accuracy and computational time. Large embedding sizes
may potentially increase the performance in the down-
stream tasks, since the vectors could capture extended as-
pects of a node. Yet, higher dimensions drastically a� ect
computing time and parametrization e� ort. Therefore, for
smaller networks we believed = 128 could be an ideal
choice, while for larger networks, such as the PPI net-
works for human (with approximately 25;000 genes), the
size can be increased from 128 to 512 or 1024 depending
on the task and computing capacity.

In summary, we conclude that BraneMF is simpler,
depends on less parameters, and produces results com-
parable, if not better, to more complex methods (e.g.,
deepNF). Although our formulation is expressive enough
to capture these representations, its multiscale properties
have certain limitations. First, the model learns one global
representation that coalesces all possible scales of net-
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work relationships. Hence, di� erent scales of the repre-
sentation are not independently accessible. Additionally,
our approach lacks to capture long-range node dependen-
cies (i.e., higher values ofw) which could be interesting
to study [5]. As future work, we intend to con�ate ad-
ditional protein associations such as post-transcriptional
and post-translation regulation information that may im-
pact the functional relationships of proteins in the real
world. Besides, it is also possible to upgrade BraneMF
to take into account protein (node) features such as bio-
chemical properties and protein sequences in the learning
process [51]. These data types can provide insights to-
wards more accurate predictions for functional analysis of
proteins. The functionality and applicability of BraneMF
are beyond embedding proteins thus not limited to biolog-
ical networks. BraneMF is a versatile tool that provides an
e� ective, uni�ed, and scalable network integration frame-
work with diverse applications.

Funding. This work has been supported in part by
ANR (French National Research Agency) under the JCJC
project GraphIA (ANR-20-CE23-0009-01).
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É., Baudot, A., 2021. MultiVERSE: a multiplex
and multiplex-heterogeneous network embedding
approach. Sci. Rep. 11, 8794.

[35] Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., Tang, J.,
2018. Network embedding as matrix factorization:
Unifying DeepWalk, LINE, PTE, and node2vec, in:
Proc. ACM Int. Conf. Web Search Data Min., pp.
459–467.

11



[36] Rudolph, M., Ruiz, F., Mandt, S., Blei, D., 2016.
Exponential family embeddings, in: Proc. Ann.
Conf. Neur. Inform. Proc. Syst., pp. 478–486.

[37] Shannon, P., Markiel, A., Ozier, O., Baliga, N.S.,
Wang, J.T., Ramage, D., Amin, N., Schwikowski,
B., Ideker, T., 2003. Cytoscape: a software environ-
ment for integrated models of biomolecular interac-
tion networks. Genome research 13, 2498–2504.
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Supplementary Material

1. Pseudocode of BraneMF

Algorithm 1 BraneMF

Input: Multilayer graphG = fGlgL
l=1;

Parameters: window size:w, embedding dimension:d, and weighting factor:

Output: d-dimension protein features,
 d

1. For eachGl , obtain its degree matrixD(l) and adjacency matrixA(l)

2. Compute power matrixP
(l)

; (P
(l)

)2; : : : ;(P
(l)

)w for eachl in Gl (whereP(l) = (D(l))� 1A(l))
3. Compute PPMI matrixM (l) for G as given in Eq. (1)
4. Solve the optimization problem in Eq. (2) to obtainU and�̄
5. Compute protein features
 d = Ud(�̄ d)


return 
 d

2. Functional derivative of O

To obtainU andV, we solve the objective functionO in Eq. (2) using the derivation given below:

@O
@U

= �

0
BBBBB@

LX

l=1

(M (l) � U� (l)V> )

1
CCCCCAV� (l) + � U + � (UV> � I )V> ;

@O
@V> = � (l)U>

0
BBBBB@

LX

i=1

(M (l) � U� (l)V> )

1
CCCCCA+ � V> + � U> (UV> � I ): (S1)
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3. Datasets

3.1. Yeast PPI networks

Network Nodes Edges Density Evidence

Neighborhood 4;900 7;656 8:741� 10� 3 Gene order and

sequence homology

Fusion 4;900 492 3:943� 10� 3 Orthology and fusion

Cooccurrence 4;900 1;231 3:861� 10� 3 Orthology

Coexpression 4;900 54;317 6:562� 10� 3 Gene expression data

Experimental 4; 900 48;190 5:600� 10� 3 Biochemical, biophysical

genetic experiments

Database 4;900 29;231 5:946� 10� 3 Human curation

Table S1:Overview of the datasets used in our study. We select the network edges whose combined score exceeds 900.

3.2. Functional annotations

The functional annotations were downloaded from the Gene Ontology database [8] (May 2022 update). Each category
of GO is represented in levels (i.e., level I, II, and III). A lower level (i.e., Level I) represents more speci�c terms
whereas a higher one (i.e., Level III) represents more general terms. Table S2 shows the number of terms per category.

Terms Level I Level II Level III

Biological Process (BP) 855 535 244

Molecular Function (MF) 216 126 53

Cellular Component (CC) 181 113 54

Table S2:Overview of the Gene Ontology (GO) terms used for prediction. Level I: 10 < proteins per term< 30; Level II: 30< proteins per
term< 100; and Level III: 100< proteins per term< 300.

14



4. Baseline models

We have selected nine multi-layer network integration methods to benchmark BraneMF. A brief introduction and
the details of their implementation are given below. We test all the methods including BraneMF with the datasets
of a well-studied organism, i.e., yeast (tax id: 4392). Our implementation takes as input the taxonomy id of each
organism and fetches the recently available data from the STRING database [41]. Moreover, we perform extensive
parameter tuning for each baseline method. The details of parameter choices for each method are given in Sec. 4.2 of
the supplementary material. We report the best performance for each model in the main results, while the remaining
results are provided in the following sections of this supplementary material.

4.1. Description and implementation

1. SNF [43]: Similarity network fusion (SNF) is a computational method for data integration. SNF �rst constructs a
similarity network of samples (e.g., patients) for each available data type and then e� ciently fuses them into one
network. We have applied SNF to integrate our datasets. Since we already have PPI networks, we have skipped
the network construction step. We obtain the integrated (fused) network from SNF with the best parameters
given by the authors. Moreover, we need features for each node of this integrated network. To obtain features,
we have performed SVD on the graph and obtain node features as the �rstd columns of the left singular matrix
U, whered is the embedding size.

Implementation: http://compbio.cs.toronto.edu/SNF/SNF/Software�les /SNFtool v2.1.tar.gz
http://compbio.cs.toronto.edu/SNF/SNF/Software�les /SNFmatlabv2.1.zip

2. Mashup [7]: Mashup extracts a compact vector representation of the network that could explain topological
patterns of nodes in multiple heterogeneous interaction networks.

Mashup is closely related to BraneMF except for some perceptible di� erences:

ˆ Firstly, node proximities in Mashup are captured using a random walk with restart (RWR) matrix. In
BraneMF, we have chosen to utilize PPMI matrices that are computed from standard random walk (RW)
matrices without restart probabilities. Speci�cally, in Mashup, the RWR for a nodei 2 V is de�ned by

st+1
i = (1 � pr )Pst

t + prei ; (S2)

wherepr is the return probability andt is the number of steps. The matrixS := [s1
1 j : : : js1

i j : : : js1
N ] 2 RN� N

is constructed, where eachs1
i is the column vector for nodei 2 V . Each entry ofs1

i indicates the proba-
bility of visiting j by starting from nodei over an in�nite walk with an additional return probability. For
BraneMF, the choice of the PPMI matrix is inspired by the relationship between SkipGram-based random
walk embeddings (e.g., DeepWalk) and matrix factorization [35]. This formulation has shown signi�cant
improvement in single-layer graph embedding methods [35]. Taking into account this inspiration, we have
utilized the concept of jointly factorizing PPMI matrices for multilayer graph embedding. The PPMI matrix
is de�ned in Eq. (1) of the main paper. Besides, the PPMI formulation has a window size parameter (T),
which is used to control the similarity de�nition between nodes. Thus, it introduces a �exible framework
which can be adapted depending on the structural properties of a given network.

ˆ Secondly, Mashup and BraneMF rely on di� erent computational optimization techniques to obtain integra-
tive embeddings. Mashup has two instances for learning embeddings. (i) A multinomial logistic model for
dimension reduction by integrating the di� usion states of each node in each network layer. (ii) Optimization
based on singular value decomposition (SVD). The later instance of Mashup is close to BraneMF's joint
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matrix factorization. Mashup simply concatenates the normalized RWR matrices, and then it performs SVD
[7]. More precisely, the resulting concatenated matrixS has a dimension ofNL � L. The logarithm ofS
is given asS̃ and truncated SVD oñS is performed (with a user-speci�ed number of components) to get a
low-rank factorizationU� V> . On the contrary, we propose an e� cient way to combine the spectra of PPMI
matrices, whose result can be viewed as the joint spectrum shared by all the graph layers. For a multilayer
graphG composed ofL layers, the PPMI matricesM (l) are computed for eachl 2 f1; : : : ;Lg. This set of
M (l) matrices are jointly decomposed to singular vector� (l) and singular value matrices (U andV) that are
shared across all layers (see Sec. 3:2 in the main paper).

Implementation: https://groups.csail.mit.edu/cb/mashup/mashup.tar.gz

3. deepNF [13]: deepNF is a network fusion method based on a multimodal deep autoencoder (MDA) to integrate
di� erent heterogeneous networks into a compact, low-dimensional feature representation common to all
networks.

Implementation: https://github.com/VGligorijevic/deepNF

4. MultiNet [2]: MultiNet is a fast scalable multiplex network embedding framework. First, it computes random
walks on all nodes across multiple network layers. Then it merges all sequences of random walks in one
document and learns node features by using an optimization that maximizes the likelihood of neighbors of a
node across network layers.

5. Multi-node2vec [44]: Multi-node2vec is a fast network embedding model for multilayer/multiplex networks
that identi�es a continuous and low-dimensional representation for the unique nodes in the network. It is an
extension of the Node2Vec model for multilayer networks.

Implementation: https://github.com/jdwilson4/multi-node2vec

6. OhmNet [52]: OhmNet is a hierarchy-aware unsupervised learning approach for multi-layer networks. It learns
node features from a multi-layer network, where each layer represents a protein-protein interaction network and
all these networks are in a tree structure. Since our dataset has no hierarchy, we have used a �at tree where the
network hierarchy is �attened; PPI networks are not rendered inside of each other, but instead are rendered as sib-
ling hierarchy elements (i.e. sharing the same parent node) toward features in the common parent in the hierarchy.

Implementation: https://github.com/mims-harvard/ohmnet

7. MultiVERSE [34]: MultiVERSE is an extension of the VERSE framework using Random Walks with Restart
on Multiplex (RWR-M) and Multiplex-Heterogeneous (RWR-MH) networks. Since all our networks share the
same set of nodes, we have used the RWR-M model of MultiVERSE for integrative analysis.

Implementation: https://github.com/LPioL/MultiVERSE

8. Graph2GO [12]: A graph-based representation learning method for predicting protein functions. Graph2GO
uses the VGAE [22] model to learn embeddings from each layer and perform concatenation to obtain �nal
embeddings.

Implementation : https://github.com/yanzhanglab/Graph2GO
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9. BraneExp [20]: It is a network integration framework that considers expressive conditional probability models
to relate nodes within random walk sequences. The model uses exponential family distributions to capture
interactions between nodes in random walks that traverse nodes within and across input network layers, learning
node features using exponential family graph embeddings.

Implementation : https://github.com/Surabhivj/BRANE-EXP

4.2. Parameter selection

All multi-layer network integration methods that are based on machine learning and mathematical models require
tuning a certain set of parameters to learn protein features. From the model description given by each method in
their respective research article, we highlight parameters that could be tuned to improve the model performance. The
remaining parameters that have little impact on performance have been set to the default values. In Table S3, we
provide the required parameters for each method that is tuned. Note that the representation in Table S3 is simpli�ed
to show the dependency of baseline methods on the di� erent parameters. For some methods, a direct comparison of
parameters is not possible since they may share di� erent parameter spaces. We adopt this approach to simplify the
parameter selection strategy.

Method d w l n � e 
 r k b

SNF 3 3 7 7 7 7 7 7 3 7
Mashup 3 7 7 7 7 7 7 3 7 7
DeepNF 3 7 7 7 7 3 7 3 3 3
MultiNet 3 3 3 3 7 7 7 7 7 7
Multi-n2v 3 3 3 3 7 7 7 7 7 7
OhmNet 3 3 3 3 7 7 7 7 7 7
MultiVERSE 3 3 7 7 3 7 7 3 3 7
Graph2GO 3 7 7 7 3 3 7 7 7 7
BraneExp 3 3 3 3 7 7 7 7 7 7
BraneMF 3 3 7 7 7 7 3 7 7 7

Table S3:Overview of parameters considered for tuning. Green coloured ticks indicate that the method depends on the respective parameters.
Red crosses show that method does not depend on a particular parameter.

1. Embedding size (d): size of protein feature vector. Its dimensionality is typically much lower than that of the
ambient space. We chosed 2 f128;256;512;1024g.

2. Walk length (l): it is a parameter to select the length of a node set you would like to obtain while performing
random walks on a graph. For instance, awalk of length 5 is de�ned as “proteinA proteinB proteinC proteinD
proteinX”. We chosel 2 f15;20g.

3. Window size (w): the number of nodes (proteins) that will be used to determine the context of each node (protein).
For instance, in awalk of length 3, such as, “proteinA proteinB proteinC”, a window size of 2 would mean your
samples are like (proteinA proteinB) or (proteinB proteinC). We chosew 2 f2;4;6;8;10g.

4. Number of walks (n): this parameter allows to select the number of random walks that will be sampled per node
(protein). We chosen 2 f10;20g.
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5. Learning rate (� ): it is a hyper-parameter that controls how much we are adjusting the weights in the learning
process with respect to the gradient of the loss function. A lower� represents a smaller step along the downward
slope. We chose� 2 f0:1;0:01;0:001;0:0001g.

6. Number of epochs (e): an epoch is one learning cycle where the learner sees the whole training data set and
calculates the error rate. We chosee 2 f60;80g.

7. Restart probability (r): this parameter is used in models that rely on Random Walks with Restart (RWR). While
performing random walks, at each iteration, the walker can also restart by jumping to any randomly selected node
in the graph, with a de�ned restart probability. We choser 2 f0:8;0:85;0:9;0:95g.

8. Gamma (
 ): it is a weighting factor used by our BraneMF model. It represents the power to be applied on
the singular values (�̄ ) used for the computation of the embeddings (please see line 5 of Alg. 1). We chose

 2 f0;0:25;0:50;0:75;1g.

9. Number of samples (k): it is the parameter to choose the number of times we would like to perform Random
Walk with Restart (RWR). We chosek 2 f2;3;4;6g.

10. Batch size (b): it is the number of samples that will be used for training at one time. We choseb 2 f32;64;128g.

Method Parameters

SNF k = 6;w = 10

Mashup r = 0:8

deepNF b = 64;k = 4;r = 0:95;e = 80

MultiNet l = 20;n = 20;w = 10

Multi-n2v l = 20;n = 20;w = 10

OhmNet w = 10;l = 20;n = 10

MultiVERSE w = 10;k = 4;r = 0:95; � = 0:01

Graph2GO e = 80;� = 0:01

BraneExp l = 20;n = 10;w = 10

BraneMF w = 10;
 = 1

Table S4:Parameter selection I.The table shows the best per-
forming parameters for the clustering and protein function predic-
tion tasks.

Method Parameters

SNF k = 6;w = 10

Mashup r = 0:95

deepNF b = 64;k = 4;r = 0:95;e = 80

MultiNet l = 20;n = 20;w = 10

Multi-n2v l = 10;n = 20;w = 2

OhmNet w = 2; l = 15;n = 10

MultiVERSE w = 2;k = 2;r = 0:8; � = 0:01

Graph2GO e = 80;� = 0:01

BraneExp l = 15;n = 20;w = 10

BraneMF w = 2; 
 = 0:5

Table S5:Parameter selection II.The table shows the best per-
forming parameters for the PPI prediction and network reconstruc-
tion tasks.
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5. Gene Ontology (GO) enrichment for clusters

5.1. Enrichment Score (ES)
Consider a gene setGk, wherek = 1; : : : ;K. Gk consists of a list ofnk genes (gk j), i.e.,Gk = fgk j : j = 1; : : : ;nkg.

Each gene in the set is represented in the ranked listL. The set of genes outside ofGk is de�ned as asḠk = fḡk j :
1; : : : ;n � nkg. The Enrichment Score (ES) for a given gene setGk is given as:

ES = sup
1� i� n

�
FGk

i � FḠk
i

�
;

where sup(�) is the supremum,i represents the position in listL, and

FGk
i =

P i
t=1 jstj� :1genet2GkP n
t=1 jstj� :1genet2Gk

;

FḠk
i =

P i
t=1 jstj� :1genet2Ḡk

n � nk
;

where1 is the indicator function for the membership in a given gene set.st is given by the correlation ofgk j and
weighted by� [39].

5.2. Z-Score
The Z-score for gene setGk is given by:

Z-score=
p

nkt̄;with t̄ =
1
nk

X

i2Gk

ti ;

wherenk is number of genes inGk andti is thet-statistic that is referred to signal to noise ratio for each gene.
The detailed description of the scoring metrics are given in [39, 19]

5.3. Results

Method k = 40 k = 60 k = 80 k = 100

Z-score

SNF � 1:73� 0:07 � 1:80� 0:03 � 1:77� 0:01 � 1:81� 0:02

Mashup � 1:85� 0:14 � 1:88� 0:12 � 1:84� 0:03 � 1:92� 0:02

deepNF � 2:10� 0:07 � 2:09� 0:06 � 2:03� 0:01 � 2:02� 0:03

MultiNet � 1:87� 0:03 � 1:99� 0:02 � 1:97� 0:02 � 2:05� 0:02

Multi-n2v � 2:62� 0:22 � 2:05� 0:06 � 1:92� 0:04 � 1:96� 0:02

OhmNet � 1:96� 0:03 � 1:92� 0:02 � 2:03� 0:01 � 1:99� 0:01

MultiVERSE � 1:93� 0:04 � 1:97� 0:02 � 2:00� 0:03 � 2:06� 0:02

BraneExp � 1:98� 0:04 � 1:98� 0:04 � 1:99� 0:02 � 2:00� 0:02

Graph2GO � 2:06� 0:04 � 1:89� 0:04 � 2:02� 0:03 � 2:04� 0:02

BraneMF � 1:92� 0:04 � 1:93� 0:03 � 1:98� 0:03 � 2:01� 0:03

Table S6:GO enrichment analysis of clusters.Performance of BraneMF compared to the baselines, measured by Z-scores. Standard deviation is
computed for all 20 runs ofk-means clustering. Parameters:
 = 1;w = 10;d = 128 for BraneMF, Sec. 4 for baselines.
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