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Abstract

Motivation: The cellular system of a living organism is composed of interacting bio-molecules that control cellular
processes at multiple levels. Their correspondences are represented by tightly regulated molecular networks. The
increase of omics technologies has favored the generation of large-scale disparate data and the consequent demand for
simultaneously using molecular and functional interaction networks: gene co-expression, protein—protein interaction
(PPI), genetic interaction, and metabolic networks. They are rich sources of information at different molecular
levels, and their effective integration is essential to understand cell functioning and their building blocks (proteins).
Therefore, it is necessary to obtain informative representations of proteins and their proximity, that are not fully
captured by features extracted directly from a single informational level. We propose BraneMF, a novel random
walk-based matrix factorization method for learning node representation in a multilayer network, with application to
omics data integration.

Results: We test BraneMF with PPI networks of Saccharomyces cerevisiae, a well-studied yeast model organism. We
demonstrate the applicability of the learned features for essential multi-omics inference tasks: clustering, function and
PPI prediction. We compare it to state-of-the-art integration methods for multilayer networks. BraneMF outperforms
baseline methods by achieving high prediction scores for a variety of downstream tasks. The robustness of results is
assessed by an extensive parameter sensitivity analysis.

Availability: BraneMF’s code is freely available at: |https://github.com/Surabhivj/BraneMF, along with datasets,
embeddings, and result files.

Supplementary information: Supplementary data are available at Bioinformatics online.

1. Introduction technologies has introduced enormous disparate omics
data in the scenario, and, in parallel, promising avenues
are paved for their analysis and interpretation [47]. De-
spite the explosion of omics data, functional annotations
are yet to be unveiled, for at least 20% of proteins, even
in model organisms [45]. Hence, novel methods to anal-
yse and obtain significant knowledge from heterogeneous
data are necessary. Analysis of single omics is lim-

Comprehensive interpretation of biological mech-
anisms in an organism requires understanding bio-
molecular interactions represented by tightly regulated
molecular networks [40]. The advent of high-throughput
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importance of multi-omics integration over single omicg§ = fG.gL=l = f(V|;E|)gL=1 of graphs, wherev, =

the interconnectedness of dirent bio-molecules (pro-undirected edges sets respectivély.and M, denote the
teins, RNAs, metabolites) and the ow of biological innumber of nodes and edges for each layer. Throughout
formation occurring among them. This will enable us tihhe paper, we assume that the layers share the same set of
understand biological mechanisms, for instance, gene regdes, so/ ; = V| = V, andN; = N, = jVj for every
ulation [18,20], protein function prediction (PFP) [9], 0 j<| L. We useA® to denote the adjacency matrix
drug—target identi cation[[28]. of the associated lay&;. Our main goal is to learn a low-

In the past years, network approaches havered po- dimensional feature representation forj&jl nodes. This
tential for integrative omics analysis, facilitating a newntegratedd-dimensional representation Gfis given by
era of systems biology [40, 45,110]. Nevertheless, it iss 2 RV 9 (d jVj ). We employ these embeddings
necessary to obtain informative representations (e.g., dor-di erent downstream prediction tasks dedicated to the
beddings) for the nodes in the network (bio-moleculeB)nctional analysis of proteins.
and their proximity. Potentially, this would be possible
by mpde_ling biological data_ as a multilayer _network anﬂ Related work
learning integrated embeddings that couléetively cap-
ture richer features and preserve biological informationA plethora of GRL approaches are based on random
from each individual layer. Multilayer network integrawalks [33,[15) 30/ 3], matrix factorization [24, |35], or
tion strategies can be classi ed as early, intermediate rieural networks [17]. However, they have mostly been
late integration([25]_14]. In early integration method#troduced for single-layer networks [47]. Inspired by
datasets are combined into a single dataset on which Wherd2Vec-based single-layer network embedding tech-
model is built and the features are learned. In the latgues [29, 33, 15], a few GRL methods have been pro-
network integration strategy, a model for each networkp®sed for multilayer networks. Principled Multilayer Net-
built individually, and these individual network features/ork Embedding (PMNE) [26] is an extension of a single-
are then combined. In intermediate integration, the datddger graph embedding to a multilayer network. Multiplex
combined through a joint model inference. Indeed, theketwork Embedding (MNE) [48] is a multi-layer network
is a great value in developing €ient intermediate-level embedding method that generates random walks for each
integration approaches [50], capable of handling hetetayer and then applies the Skip-Gram model [29] to learn
geneous data, providing insights into the functional cgpint embeddings for each node. The nal node embed-
egories of proteins (e.g., representation of system-ledahgs are composed of three parts: common embeddings,
inter-relationships within bio-molecules). relation-based embeddings, and a transformation matrix.

In this paper, we are inspired by Graph Representdulti-Net [2] uses random walks, namely classical, dif-
tion Learning (GRL) algorithms to encode graph stru¢dsive, and physical to obtain node sequences [38, 16].
ture into compact embedding vectors|[17]. Our motivdhen, it merges the nodes' neighborhoods (context for
tion is further extended towards leveraging closed formeach node) and learnsdadimensional feature vector for
of GRL methods that perform implicit matrix factorizaeach node by maximizing the likelihood of occurrence of
tion, favouring intrinsic connection and interpretability ofiode neighbors across all layers. Multi-node2vec (Multi-
graph topologyl[24, 35]. We propose BraneMF, a noveRv) [44] extends Node2Vec [15] to multi-layer networks.
intermediate-level network integration framework by effhe model collects a bag of words from each layer by per-
fectively combining PPI networks of heterogeneous ddtaming vertex neighborhood search. Then, the optimiza-
sources. We formally de ne the task as a multilayer neion procedure computes the features by using the Skip-
work embedding problem. Given a set of networks, w&ram neural network model on the identi ed neighbor-
aim to learn low-dimensional latent node embeddings Boods. Recently, MultiVERSE [34] computes a similar-
that the structure of input networks is properly integratéty matrix using random walk with restart (RWR). Then, it
and preserved in the new space. applies an optimized version of VERSE [42], a vertex-to-

More formally, a multilayer graph of-layers is a set vertex similarity-oriented embedding method to compute



the representations. FAME [27] decomposes the hetesame transcription factor, have the same epigenetic mark
geneous multiplex network into homogeneous and bipar-belong to the same metabolic pathway. In order to de-
tite sub-networks. It follows the use of a spectral transfdermine such similarities betweenpriori unlinked pro-
mation module to automatically aggregate and decoupdns, it is necessary to obtain an informative representa-
sub-networks with the exploration of their multi-relationaion of proteins and their proximity that is not fully cap-
topological signals. Lastly, BraneExp [20] is based dnred by handcrafted features directly extracted from the
random walks that are used to de ne node similarity, uPPI network. GRL-driven models are candidates for the
ing expressive conditional probability functions. It is above tasks. Given a multilayer network, GRL algorithms
network integration framework with the concept of expa@an embed it into a hew compact vector space in such
nential family graph embeddings, which generalizes ma-way that both the original network structure and other
tilayer random walk-based GRL methods to an instankegent features are captured. Indeed, existing methods
of exponential family distribution [36, 3]. are challenged when applied to biological datasets that
For biological networks, Similarity Network Fusiondemand comprehensive handling of data heterogeneity.
(SNF) [43] constructs a similarity network for each datalso, existing GRL methods for multilayer networks de-
type and then iteratively integrates these networks usipgnd on humerous parameters—thus being computation-
a network fusion methodology. Mashup [7] is a networdly intensive in nding optimal parameter settings. Be-
integration framework based on matrix factorization thatdes, biologists generally dispose of low levels of ground
builds compact low-dimensional vector representationstaiith. To e ciently search for appropriate ground truth
proteins. It takes as input a collection of PPI networlkghen biological information is not fully known, becomes
and generates embeddings that best explain their wirendi cult and time consuming task. Hence, there is a huge
patterns across all networks. deepNF [13] is a netwakope to develop new methods that can address these chal-
fusion method relying on multimodal deep autoencoddenges. In this study, we derive embeddings purely via a
(MDA). It also takes a collection of PPI networks as indata-driven fashion such that the probability of the con-
put and makes use of an autoencoder (AE). OhmNet [3&kt of a protein is maximized. To do so, we obtain ran-
is an unsupervised feature learning approach for muliem walk-based Positive Pointwise Mutual Information
layer networks with a prede ned hierarchy describing réPPMI) matrices from the set of networks to capture node
lationships between the layers. To capture the structunaighborhood information. These matrices are used as in-
properties of networks, deepNF and Mashup are basedpom for learning embeddings using a joint singular value
Random Walks with Restarts (RWR). The vectors learnddcomposition (SVD) framework. Moreover, we demon-
from both methods are then fed into a support vectsirate the adequacy of the learned embeddings to solve
machine (SVM) classi er to predict functional classeBnportant downstream machine learning tasks such as
of proteins. deepMNE-CNN [32] has been introduceatotein clustering with their functional enrichment, pre-
as a multi-network embedding approach which appliesdition of protein functions and PPIs.
semi-autoencoder based model to learn protein features.
Graph2GO [12] extends variational graph autoencoders

(VGAE) to multilayer networks. It establishes to inteS:

grate networks derived from heterogeneous mformanon,BraneMF is an integration framework to learn protein

including sequence S|m|Ia_r|ty, prptem—proteln mteracuo?ﬁatures from multiple PPI networks. A schematic repre-
and protein features, amino acid sequence, sub-cellular

. ) . Sentation is given in Fig. 1.
location, and protein domains.

Most of these network integration frameworks are en- i i
grossed towards Gene Ontology (GO) prediction. If twol- Computation of random walk-based PPMI matrices
proteins have a similar function, apart from their direct Network properties, particularly topological ones, can
relationship in the network, they can have many furthanravel important information about the graph structure.
characteristics in common, such as biological process@#ile handling multiple heterogeneous networks that cor-
molecular function, cellular location, regulated by theespond to diverse characteristics, it is essential to extract

Materials and methods



Figure 1: Schematic representation of BraneMF.The framework takes as input a set of PPI networks represented by their adjacency matrices
AW:12f1;2;:::;Lg For each PPI network, the random walk matviX) is computed. For integrative analysis, we learn protein features by jointly
decomposing these random walk matrisé® intoU ®OV>. The protein features g are given byq( ¢) , whered is the embedding dimension

and is a factor that scales the magnitude of the singular values. The learned protein features are then utilized for functional analysis of proteins.

relevant information concealed in their topology. We aim Focusing on a speci ¢ instance of such approaches, the
to extract such information from a multilayer gra@ DeepWalk method rst generates a corpsby perform-
constructing a set of PPMI matrices that can delineatg random walks on a graph [33]. A corpig is a
node similarity via random walks. Random walks, ddsag of multisets that counts the multiplicity of nodes
ned as node paths that consist of a series of random stepsl their context. DeepWalk then trains a Skip-Gram
on the graph, have been used as a similarity measurerfardel onW . To be formal, it assumes a corpus of node

from some single-layer grapB, and a starting node, length of the random walk. The context of nodeis
a random walk performs transitions by selecting a neighiven as the surrounding nodes in w-2ized window

generation procedure continues for all nodes and foiGaldberg [24] and Qiu et al. [35], the closed form expres-
prede ned number of walks of a given length. In thision of the DeepWalk matrix for any gragh is given
way, node sequences are obtained that are further ulsed

to learn node features. This can be achieved by maxi- -

mizing the likelihood of node co-occurrences within ranog M logb = |OQ%M él x pfiD 1%
dom walks, following ideas from the Skip-Gram modej #(v):?éc) } bw W,

in natural language processing (NLP). Nevertheless, tJor Skip-Gram | {z }
large networks, simulating random walks is computation- .

ally expensive and requires additional parameter setti?%]' the left-hand side, #(c); #(v), and #() denote respec-

To alleviate this eect, recent studies have formulated thively the number of times node-context pair¢), node

problem of random walk embedding generation as a nta2nd contextc appear inW , while b is the number of
trix factorization task [24, 35]. negative samples. The right-hand side is represented by

D as the degree matrix of graji, and the power matrix

DeepWalk matrix



P de ned asD !A. Here, vol@) is the volume (size) of given by:M® U Ov>; | 2 f1;:::;Lg The correspon-
G,. For a detailed theoretical explanation, refer to Se2. 2Zlence above keeps, whedeandV> are orthogonal matri-
in [35]. Inspired by this formulation, we have chosen tees containing the joint singular vectors arftl 2 RViIVi
obtain the set of PPMI matriced = fM(')gL:1 using the contains the corresponding singular values in the layer
closed form expression of the DeepWalk matride8 for The minimization of the following objective functio®

a multilayer graplG: yieldsU andV:
8 9,
Xv X
M= §|09 OI(G')EE PO é D" 1% L) argmin 0= = kMO U Oy>i2
: bw w =1 s =1 U;V2RIVi Vi 2 =1 (2)
Each matrixM® corresponds to the DeepWalk matrix of +§(kUk% +KVIE) + EkUV> 1E;

G when the length of random walks goes to in nity. In o
this regardM© is di erent from the PPMI matrices comWherel 2 RMM s the identity matrix, andk k- de-
puted in previous approaches. As discussed in Sec. 2,ates the Frobenius norm. The rst term of the objec-
PPMI matrix for deepNF and Mashup is computed usiritye functionO measures the overall approximation error
Random Walks with Restart (RWR), considering an a#hen all layers are decomposed olerThe second term,
ditional parameter that controls the restart probability §fe norms ofU andV~, is added to improve numerical
the random walk. Despite both capturing node proxirtability for the solutions; and the last term is a constraint
ity, the DeepWalk matrix signi cantly diers from RWR; to ensure tha¥> is close to the inverse dff (M® is a
the formulation ensures that its latent factors will deriveymmetric matrix, thus its SVD can be givenby U 1).
embeddings that capture node co-occurrences in randori/e solve the problem in Eq. (2) to gdtandV~. Since
walks. Eg. (2) is not jointly convex ok andV>, we adopt an al-
ternating scheme to nd a local minimum f@ by xing
3.2. Joint representation learning for multilayer netV~ st and optimizing onU, and vice versa [11]. The
works derivatives ofO with respect toU and V> are given in

_ Eqg. (S1) (Supplementary Material (SM)). For nonconvex
The set of matrice computed as above Capture8ptimization, a good initialization is important, and we

node proximity that still represents high-dimension proy,gqest to compute the SVD of the mean for all matrices
tein features. As a consequence of the curse of dlmwd)’ and initializeU, , andV> with the resulting matri-

sionality, these features are not compatible for dowpgg. (; is the set of joint singular vectors, namely a joint

stream prediction tasks. Therefore, we want to ObtaéBectrum shared by all layers @ _is the joint singu-

low-dimension integrated protein features that could Pfr value matrix computed by taking the average 6f
easily fed to any downstream machine learning taSksrﬂstrices. The integrated embeddings 2 R" 9 are ob-

interest. Nevertheless, our integration framework is d%'med by multiplying the rstd columns ofU, Ug 2 R" @
veloped on the construction of random walk-based PPWl; a4 1y the -th power of the singular value magnitudes,
matrices (Eq. (1)), on which joint matrix factorlzatlor{—d) 2 R d-

is eventually performed. In order to learn the spectrum -u (—) ) 3)
of one layer in grapl, the singular values and singular d @

vectors of its PPMI matri# can be obtained using SVD,The stopping condition is de ned by the convergence be-
asM = U V7>, whereU andV correspond to the left andhavior of the cost function—the derence between its
right singular vector matrices, ands the diagonal singu- values for two consecutive iterations. This optimization
lar value matrix. In the case of a multilayer graBltom- process is similar to [11], that uses an eigendecomposi-
posed byl layers, we havd symmetric PPMI matrices.tion to nd low-rank eigenvector matrices that are shared
As a natural extension, we propose to approximate edmhall graph layers. However, these matrices were not ran-
PPMI matrixM® by a set of jointly decomposed singudom walk-based and the joint decomposition is performed
lar vector and singular value matrices shared by all layeds, erently. The joint SVD process described above is



essentially based on integrating information from multi-  Method k=40 k=60 k=80 k=100
ple graph layers. It tends to treat each graph equitably, SNF 72 102 231 66 152 24 431 41
building a solution that smoothens out speci cities of each ~ Mashup 215 06 301 30 388 04 419 04

. . . ] deepNF 257 1.7 227 12 263 1.0 262 11
layer. An overview of BraneMF is given in Algorithm 1\ "mS 0 504 22 225 05 454 00 454 00

in the SM. Multi-n2v 166 24 247 09 466 01 466 01
OhmNet 151 72 351 02 451 03 451 04
MuliVERSE 184 104 137 09 201 00 204 00

4, Results BraneExp 20 67 419 14 454 00 454 00
_ Graph2GO 2B 17 225 119 255 119 304 7.7
4.1. Experimental setup BraneMF 2405 9:3 462 55 489 428 495 338

To substantiate our methodology, we apply it over six
yeast STRING networks. Their relationships are mainyie 1:60 enrichment analysis (ES)Performance of BraneMF com-
de ned by "Neighborhood', "Fusion’, "Co-occurrencepared to the baselines, measured by the ES. Standard deviation is com-
“Co-expression’, ‘Experimental’, and ‘Database’. A bri@fted for 20 runs ok-means clustering. Bold: best score, underlined:
overview of the input data and the gene ontology (G%ﬁ‘zg‘icbef)t;f%r:ée';ﬁgasmeters; Lw = 10,d = 128 for BraneMF,
terms are given in SM (Table S1) and SM (Table S2), ' '
respectively. LetG be a multilayer network constructed
overjVj = 4,900 proteins. BraneMF depends on thregs  Clustering and GO enrichment of proteins
parameters: embedding sideEq. (3), window sizew,
Eg. (1), and weighting factor, Eq. (3). Given this Proteins are building blocks of a biological system that
set as input to BraneMFRJ-dimensional latent featuresfacilitate cellular processes. Their discovery, functional

4 2 RVi 9 are learned. We have selected nine baselirenotation, and characterization are of great importance
in our empirical analysis. Their description and parantd5]. Therefore, we examine the ability of the learned
eter selection are provided in SM (Sec. 4). Further, i@atures 4 to cluster proteins of similar functions. Due
investigate the usefulness of the learned embeddingstfothe large number of proteins (i.e;,990), we choose
various omics inference tasks. Firstly, we perform clubigher numbers for clusters, with 2 f40; 60; 80; 100y
tering using the protein features and by GO enrichmenur choice of clustering algorithm is thiemeans+
analysis we show the functional relatedness of proteidd. We execute it 20 times to take into account the
in these clusters (Sec. 4.2). Secondly, we design prandomness in the algorithm. For each of the ob-
tein function prediction as a multi-label node classi caained clusters, we perform Gene Set Enrichment Analy-
tion problem by training a SVM model. We predict bisis (GSEA) [39] using the "GMiological Process2018'
ological process (BP), molecular function (MF), and cefind "GQMolecular Function2018' libraries of the¥eas-
lular component (CC) (Sec. 4.3). Next, we perform PEENrichr database [23] consisting of 849 GO terms. A
prediction by learning protein features using datasetsadfister is considered to be enriched if, at least, one GO
2015 (deepNF and Mashup benchmark datasets) aimiegn in a cluster is signi cantly enriched (adjusted P-
to predict unseen PPIs which are updated by 2021 [4¢&lue < 0:05). For all the signi cantly enriched clus-
Moreover, we use the computed embeddings from ders, the performance is measured by the enrichment score
dataset to reconstruct the integrated yeast PPl netw@s) and Z-score [39]. The de nition of these metrics is
provided in STRING database (Sec. 4.4). Note that, fotven in SM (Sec. 5). The nal scores are calculated by
eachd, we select one embedding le per model that pr&somputing the average over the 20 simulations. Similarly,
vides the best performance for each downstream task. Weeevaluate the clusters obtained for the baseline meth-
respective parameters selection is given in SM (Tableds.
S4; S5). Lastly, we have also performed parameter un-GSEA results with ES and Z-score are shown in Tables
certainty analysis, examining the impact of theelient 1 and S6. The performance of BraneMF measured by ES
choices ford, , andw. Details are provided in SM (Sec.s higher fork = 60;80 and 100 compared to the base-
8). The experiments and their respective evaluations dnes. Fork = 40, deepNF achieves higher performance
described below. than BraneMF. Overall, this demonstrates that clusters



from BraneMF's features can group proteins into more
signi cantly enriched biological processes for higher val-
ues ofk. Moreover, Multi-node2vec and BraneExp are the
second best-performing methods. The visual representa-
tion of the obtained clusters and their respective enrich-
ment is given in SM (Fig. S1). This is our preliminary
analysis to show the ability of the learned embeddings to
cluster functionally related proteins. Nevertheless, the ex-
tensive analysis with dierent values ok could reveal the
optimal k for each model. In the next section, we apply
the learned embeddings to protein function prediction.

. ) o Figure 2:Integrating multiple networks outperforms individual net-
4.3. Protein function prediction work. Performance of BraneMF applied on individual yeast STRING

In this section, we investigate the reliability of Iearne%emorks' measured by the F1 score. Parameters:Lw = 10,d =
. . . 28. Error bars show the standard deviation across 10 CV trials.
features to predict protein functions. We model the prob-
lem of protein function prediction as a multi-label node
classi cation task. We use the learned featureg, to ] ]
train an SVM classi er and predict probability scores fofree levels, whereas the "Fusion’ network gives the low-
each protein. We use the SVM implementation provid&®t score._Th|s Indlcat_es the importance of the rst three
in the LIBSVMpackage [4]. To measure the performané‘@twor'fs in the funct|on_pred|ct|on task, compared to
of the SVM on the embedding vectors, we adopt a 5-fol@e "Neighborhood', “Fusion’, and "Co-occurrence’ net-
cross validation (CV) process [7, 13]. We split all the avorks.
notated proteins into a training set, comprising of 80%, Additionally, we have explored three dirent network
and a test set, comprising the remaining 20% ones. Wegration strategies namely early, intermediate, and late.
train the SVM on the training set and predict the fundzarly integration is performed before the modeling pro-
tion of the test proteins. We use the standard radial basess, for example, merging all networks into one. On
kernel (RBF) for SVM and perform a nested 5-fold crogke contrary, late integration is done after the modeling
validation within the training set to select the optimal hyprocess is applied to each network, and then it concate-
perparameters of the SVM via grid search (i.ein the nates the obtained features. BraneMF is an intermedi-
RBF kernel and the weight regularization param&®r ate integration model where integration is performed in
All performance results are averaged over 1Cedent CV the learning process of embedding computation. To show
trials. The evaluation metrics m-AUPR, M-AUPR, ACCthe e ectiveness of the intermediate level of integration,
and F1 used for protein function prediction are mentionege have compared BraneMF with BraneMF-early and
in SM (Sec. 61). BraneMF-late. In BraneMF-early, the PPMI matrix is
We rst investigate the added value of integration focomputed from the adjacency matrix of the network ob-
protein function prediction. To do this, we have learnddined by taking the union of all six network layers. Then,
protein features for each input network and performelddimensional protein features are learned. In BraneMF-
classi cation. We then compare the performance of thate, the protein features are learned independently for
features learned from individual input networks to the ireach layer, and the nal features are obtained by taking
tegrated ones. The evaluation of results is done by cotheir average. The performance is evaluated by comput-
puting the F1 score. The results for level | for BP, MF, aridg the F1 score and accuracy metrics. As we can observe
CC are shown in Fig. 2, while the results for levels Il anid Fig. 3 and SM (Fig. S3), BraneMF outperforms the
Il are shown in SM (Fig. S2). We observe that integraest integration strategies for all three levels of BP, MF,
tion outperforms individual network protein function preand CC. There is an increase of 2% in the accuracy of
diction. Also, the "Experimental’, "Co-expression’, an8P | when compared to BraneMF-early and an increase
"Database' networks demonstrate good performance inallL0% compared to the BraneMF-late integration model.



Method BP I MF | CClI

SNF Q199 0:01 @104 000 0206 0:01
Mashup @71 00 0263 0:02 0520 0:02
deepNF @41 0:01 0342 0:02 0564 0:02

Multi-Net 0:335 0:01 @353 0:02 0532 0:02
Multi-n2v. 0:331 0:01 0323 001 0511 0:.01
OhmNet 0321 0:01 0300 001 0512 0:01
MultiVERSE 0312 0:01 0294 001 0502 0:02
BraneExp @52 0:01 0:368 0:01 0:548 0:03
Graph2GO 40 001 0355 0:01 0564 0:02
BraneMF 0:382 0:01 (@392 0:02 0615 0:02

Figure 3:Integration strategies. Performance of BraneMF compared

to early and late integration measured by F1 score. Parameters:

1;w = 10,d = 128. The error bars show the standard deviation acroksble 2:Protein function prediction. Performance of BraneMF, com-

10 CV trials. pared to baseline methods using the F1 score. Parameterst;w =
10;d = 128 for BraneMF, SM (Sec. 4) for baselines. The standard devi-
ation is computed based on 10 CV trials. Bold: best score, underlined:
second best score.

Also, the performance of BraneMF for MF and CC is sig- ) . . -
ni cantly higher than BraneMF-early and BraneMF-laté-4: Protein-Protein interaction (PP1) prediction
under F1 and ACC scoring schemes. Hence, BraneMFThe interactome is the complete map of PPIs that can
's improvement can be partially attributed to the fact thaecur in an organism. It is still an open question whether
separately computing the random walk matrices of eaglgomplete interactome of any organism will ever be dis-
individual layer uncovers compressed topological paovered by experimental techniques [21]. Therefore, pre-
terns, that are dicult to identify in the combined net-dictive methods have become more popular in systems bi-
work (BraneMF-early model) where dérent edge typesology to reveal the wiring patterns of proteins. éttive
are not distinguished. Moreover, BraneMF has the advategration of PPIs from dierent data sources (experi-
tage over late integration to bene t from capturing intemental anébr computational) can help us to have a near
layer correlation of modalities at the feature level that @mplete set of interactome [21]. In this task, our goal is
challenging for late integration. to predict the missing (unseen) PPIs (edges) between pro-
teins (nodes) using the learned features. We use PPIs from
We also compare the performance of BraneMF to thige 2015 and 2021 STRING networks to form training and
baseline methods with the validation strategies descrildedt sets, respectively. We form the positive training set
earlier. Table 2 and SM (Tables S7, S8, and S9) shémem PPIs that did not change from 2015 to 2021, and the
the classi cation results for level I, Il, and IIl of BP, MF, positive test set from the PPIs that did not exist in 2015 but
and CC respectively. We observe that protein functigained existence in 2021. The same number of PPIs that
prediction based on BraneMF substantially outperforrds not exist in both networks are sampled to generate neg-
other integration methods in assigning a previously uative instances for each training and test sets respectively.
seen protein to its known functional categories in a CVhe learned embeddings (Sec. 3) of proteandv, given
experiment. For instance, the F1 score for BraneMis 4[u] and 4[V], are converted into edge feature vec-
(BP 1) is 382%, that is 3 points higher than Branetors by applying the coordinate-wise Hadamard product
Exp and 42 points higher than Graph2GO, the secorat cosine similarity operations [15]. De nitions of these
best-performing method. Whereas BraneMF correctly agperations are given in SM (Sec. 7.1). We perform the
signed 26% of proteins (on average) to BP | category, pnediction task using logistic regression classi er with L2
contrast to 28% for Graph2GO and 22% for BraneExpregularization. The performance of PPI prediction is eval-
Similarly, BraneMF consistently outperforms the baseated based on AUROC (area under the Receiver Op-
lines for level Il and level 111, erating Characteristic curve) and AUPR (area under the



Method AUPR-H AUROC-H AUPR-C AUROC-C matrix factorization, that generalizes random walk-based

SNF 0637 0628 Q575 o550 network embedding models. More precisely, BraneMF
Mashup 0757 Q743 Q712 0:707  brings the best of two worlds: expressiveness of the well-
deepNF 764 Q747 Q490 0480 celebrated random walk-based embedding models (e.g.,

l\'\jﬂ:ttl'r':‘ze\f 8;22 8;53 8‘512(1) gggg DeepWalk [33], node2vec [15]) and the solid formulation
OhmNet 0513 0514 0516 as16  Of matrix factorization—going further by extending them
MultiVERSE 0500 Q501 Q501 0501 to integrate multiple sources. We have demonstrated the
BraneExp 0777 0:760 0:683 0680  wide applicability of BraneMF in exploiting functional
Graph2GO @21 o757 0:502 Q498 Znalysis of proteins in PPI networks by studying the qual-
BraneMF 0:783 0:747 0:725 0:682

ity of clusteredness of functionally related proteins, the
accuracy of predicting protein functions, and the infer-
Table 3:PPI prediction performance. Performance of BraneMF, com-ence of interactions in the reconstruction of the yeast in-
pared to the baseline methods, measured by the AUROC and AURRgctome. BesideS, while Comparing against nine other

for the edge features computed by coordinate-wise operations giver]éa/ : " _
Hadamard product (-H) and cosine similarity (-C). Bold: best score, up- seline models, BraneMF has shown competitive per

derlined: second best score. Parameters: 1;w = 10,d = 128 for formance in all (_Jlownstream as’_sessments- |_n a modeling
BraneMF, SM (Sec. 4) for baselines. framework that integrates multiple sources, it is impera-
tive to de ne the uncertainty of the model's predictions.

o ) We have performed sensitivity analysis for three pa-
Precision-Recall curve). The results are shown in Table 3meters, namely, w, andd that BraneMF depends on.

We observe that BraneMF has competitive and consistefie embedding size range is consistent with the current
behavior across almost all evaluation metrics for the PRLature. The selected sizes of the embedding vectors
prediction, achieving 5% higher performance (AUPR'aref128 256,512 1024y for BraneMF and all the base-
H) than BraneExp which is the second best performifge models. Alsow and are given as2: 4; 6;8; 10y
model. deepNF and Mashup also perform well under spgyq t0: 0:25; 0:50;0:75; 1g respectively. The details are
ci ¢ evaluation metrics. presented in SM (Sec. 8). We observed that BraneMF
Additionally, we reconstructed the yeast STRING nefierforms relatively consistently, even with smaller dimen-
work using the learned representations. The details q[gy, sizes i.e., 128. For other networks with a smaller or
provided in SM (Sec. :2). The respective results argyrger number of nodes, the embedding dimensions used
shown in SM (Fig. S4). Here, we observe that BraneMfre mostly selected empirically. The tradedis between
qutperforms all baseline models for both evaluation m%curacy and computational time. Large embedding sizes
rics. For the top 1000 edges, notably all the baseling,ay potentially increase the performance in the down-
methods except SNF, give 100% of Precision. WheReam tasks, since the vectors could capture extended as-
we increase the number of edges to 1 million, BraneMfgcs of a node. Yet, higher dimensions drasticallga
and Multi-node2vec continue to show higher performanggmputing time and parametrizationat. Therefore, for

when compared to the baseline models. smaller networks we believé = 128 could be an ideal
choice, while for larger networks, such as the PPI net-
5. Discussion works for human (with approximately 2800 genes), the

size can be increased from 128 to 512 or 1024 depending
The wide availability of omics data has driven the neamh the task and computing capacity.

for the development of novel integrative methods that canin summary, we conclude that BraneMF is simpler,
properly analyse and interpret them. We have presentigpends on less parameters, and produces results com-
BraneMF, an integrative framework for analyzing thparable, if not better, to more complex methods (e.g.,
topology of multiple protein-protein interaction networkdeepNF). Although our formulation is expressive enough
towards extracting relevant protein features from heteito-capture these representations, its multiscale properties
geneous data sources. BraneMF performs integratiorhaf/e certain limitations. First, the model learns one global
multilayer biological networks with the concept of jointepresentation that coalesces all possible scales of net-



work relationships. Hence, dérent scales of the repre- [6] Chicco, D., Jurman, G., 2020. The advantages of
sentation are not independently accessible. Additionally,
our approach lacks to capture long-range node dependen- score and accuracy in binary classi cation evalua-
cies (i.e., higher values af) which could be interesting

to study [5]. As future work, we intend to con ate ad-
ditional protein associations such as post-transcription&f]
and post-translation regulation information that may im-
pact the functional relationships of proteins in the real
world. Besides, it is also possible to upgrade BraneMF
to take into account protein (node) features such as bidS]
chemical properties and protein sequences in the learning
process [51]. These data types can provide insights to-
wards more accurate predictions for functional analysis of
proteins. The functionality and applicability of BraneMF 9]
are beyond embedding proteins thus not limited to biolog-
ical networks. BraneMF is a versatile tool that provides an
e ective, uni ed, and scalable network integration frame-
work with diverse applications.

[10]
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Supplementary Material

1. Pseudocode of BraneMF

Algorithm 1 BraneMF

Input: Multilayer graphG = fG|gL:l;

Parameters: window sizer, embedding dimensiom, and weighting factor:
Output: d-dimension protein features,y

1. For eachG;, obtain its degree matri®(") and adjacency matria®

3. Compute PPMI matrim® for Gas givenin Eq. (1)
4. Solve the optimization problem in Eg. (2) to obtalrand
5. Compute protein featuresq = Ug( ¢)

return g

2. Functional derivative of O

To obtainU andV, we solve the objective functio@ in Eq. (2) using the derivation given below:
@_ E;L MmOy <'>v>)§/ O+ U+ UV V7
@J 1=1

Qi: (|)U>é<L ™mO y (')V>)é+ V> + UT(UV> ) (S1)
@ =1
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3. Datasets

3.1. Yeast PPI networks

Network Nodes Edges Density Evidence
Neighborhood 4900 7656 8741 10° Gene order and
sequence homology
Fusion 4900 492 3943 103 Orthology and fusion
Cooccurrence 800 1231 3861 1023 Orthology
Coexpression 00 54317 6562 10° Gene expression data
Experimental 4900 48190 5600 10° Biochemical, biophysical
genetic experiments
Database H00 29231 5946 10° Human curation

Table S1:Overview of the datasets used in our studyWe select the network edges whose combined score exceeds 900.

3.2. Functional annotations

The functional annotations were downloaded from the Gene Ontology database [8] (May 2022 update). Each category
of GO is represented in levels (i.e., level |, Il, and Ill). A lower level (i.e., Level I) represents more speci ¢ terms
whereas a higher one (i.e., Level lll) represents more general terms. Table S2 shows the number of terms per category.

Terms Levell Levelll Levellll
Biological Process (BP) 855 535 244
Molecular Function (MF) 216 126 53
Cellular Component (CC) 181 113 54

Table S2:Overview of the Gene Ontology (GO) terms used for prediction Level I: 10 < proteins per ternx 30; Level Il: 30< proteins per

term< 100; and Level llI: 100< proteins per ternx 300.
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4. Baseline models

We have selected nine multi-layer network integration methods to benchmark BraneMF. A brief introduction and
the details of their implementation are given below. We test all the methods including BraneMF with the datasets
of a well-studied organism, i.e., yeast (tax id: 4392). Our implementation takes as input the taxonomy id of each
organism and fetches the recently available data from the STRING database [41]. Moreover, we perform extensive

parameter tuning for each baseline method. The details of parameter choices for each method are given in Sec. 4.2 of

the supplementary material. We report the best performance for each model in the main results, while the remaining
results are provided in the following sections of this supplementary material.

4.1. Description and implementation

1. SNF [43]: Similarity network fusion (SNF) is a computational method for data integration. SNF rst constructs a
similarity network of samples (e.g., patients) for each available data type and tlogandy fuses them into one
network. We have applied SNF to integrate our datasets. Since we already have PPI networks, we have skipped
the network construction step. We obtain the integrated (fused) network from SNF with the best parameters
given by the authors. Moreover, we need features for each node of this integrated network. To obtain features,
we have performed SVD on the graph and obtain node features as thiiecodimns of the left singular matrix
U, whered is the embedding size.

Implementation: httglcompbio.cs.toronto.edBNFSNHSoftware les/SNFtoolv2.1.tar.gz
http//compbio.cs.toronto.edBNFSNFSoftware les/SNFmatlabv2.1.zip

2. Mashup [7]: Mashup extracts a compact vector representation of the network that could explain topological
patterns of nodes in multiple heterogeneous interaction networks.

Mashup is closely related to BraneMF except for some perceptibkreinces:

Firstly, node proximities in Mashup are captured using a random walk with restart (RWR) matrix. In
BraneMF, we have chosen to utilize PPMI matrices that are computed from standard random walk (RW)
matrices without restart probabilities. Speci cally, in Mashup, the RWR for a m@J€ is de ned by

§1=(@1 p)Ps+ pe; (S2)

wherepy is the return probability antlis the number of steps. The mat&= [s}j:::js"j:::jsy] 2RV N

is constructed, where eaeh is the column vector for node2 V. Each entry of' indicates the proba-

bility of visiting j by starting from nodeé over an in nite walk with an additional return probability. For
BraneMF, the choice of the PPMI matrix is inspired by the relationship between SkipGram-based random
walk embeddings (e.g., DeepWalk) and matrix factorization [35]. This formulation has shown signi cant
improvement in single-layer graph embedding methods [35]. Taking into account this inspiration, we have
utilized the concept of jointly factorizing PPMI matrices for multilayer graph embedding. The PPMI matrix
is de ned in Eq. (1) of the main paper. Besides, the PPMI formulation has a window size paraijeter (
which is used to control the similarity de nition between nodes. Thus, it introduces a exible framework
which can be adapted depending on the structural properties of a given network.

Secondly, Mashup and BraneMF rely on dient computational optimization techniques to obtain integra-
tive embeddings. Mashup has two instances for learning embeddings. (i) A multinomial logistic model for
dimension reduction by integrating the dision states of each node in each network layer. (ii) Optimization
based on singular value decomposition (SVD). The later instance of Mashup is close to BraneMF's joint
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matrix factorization. Mashup simply concatenates the normalized RWR matrices, and then it performs SVD
[7]. More precisely, the resulting concatenated mafixas a dimension diL L. The logarithm ofS

is given asS and truncated SVD o8 is performed (with a user-speci ed number of components) to get a
low-rank factorizatiord V>. On the contrary, we propose an eient way to combine the spectra of PPMI
matrices, whose result can be viewed as the joint spectrum shared by all the graph layers. For a multilayer
graphG composed ot layers, the PPMI matricel®!) are computed for eadh2 f1;:::;Lg This set of

M® matrices are jointly decomposed to singular vectdrand singular value matrlcelal (@ndV) that are

shared across all layers (see Se.i8 the main paper).

Implementation: http#groups.csail.mit.edolymashugmashup.tar.gz

. deepNF [13]: deepNF is a network fusion method based on a multimodal deep autoencoder (MDA) to integrate
di erent heterogeneous networks into a compact, low-dimensional feature representation common to all
networks.

Implementation: httpggithub.comVGligorijevic/deepNF

. MultiNet [2]: MultiNet is a fast scalable multiplex network embedding framework. First, it computes random
walks on all nodes across multiple network layers. Then it merges all sequences of random walks in one
document and learns node features by using an optimization that maximizes the likelihood of neighbors of a
node across network layers.

. Multi-node2vec [44]: Multi-node2vec is a fast network embedding model for multitaystiplex networks
that identi es a continuous and low-dimensional representation for the unique nodes in the network. It is an
extension of the Node2Vec model for multilayer networks.

Implementation: httpggithub.condidwilson4multi-node2vec

. OhmNet [52]: OhmNet is a hierarchy-aware unsupervised learning approach for multi-layer networks. It learns
node features from a multi-layer network, where each layer represents a protein-protein interaction network and
all these networks are in a tree structure. Since our dataset has no hierarchy, we have used a at tree where the
network hierarchy is attened; PPI networks are not rendered inside of each other, but instead are rendered as sib-
ling hierarchy elements (i.e. sharing the same parent node) toward features in the common parent in the hierarchy.

Implementation: httpggithub.commims-harvardbhmnet

. MultiVERSE [34]: MultiVERSE is an extension of the VERSE framework using Random Walks with Restart
on Multiplex (RWR-M) and Multiplex-Heterogeneous (RWR-MH) networks. Since all our networks share the
same set of nodes, we have used the RWR-M model of MultiVERSE for integrative analysis.

Implementation: http#github.comLPioL/MultiVERSE

. Graph2GO [12]: A graph-based representation learning method for predicting protein functions. Graph2GO
uses the VGAE [22] model to learn embeddings from each layer and perform concatenation to obtain nal
embeddings.

Implementation : http#github.comtyanzhanglalisraph2GO
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9. BraneExp [20]: It is a network integration framework that considers expressive conditional probability models
to relate nodes within random walk sequences. The model uses exponential family distributions to capture
interactions between nodes in random walks that traverse nodes within and across input network layers, learning
node features using exponential family graph embeddings.

Implementation : http#github.comSurabhiviBRANE-EXP

4.2. Parameter selection

All multi-layer network integration methods that are based on machine learning and mathematical models require
tuning a certain set of parameters to learn protein features. From the model description given by each method in
their respective research article, we highlight parameters that could be tuned to improve the model performance. The
remaining parameters that have little impact on performance have been set to the default values. In Table S3, we
provide the required parameters for each method that is tuned. Note that the representation in Table S3 is simpli ed
to show the dependency of baseline methods on therdnt parameters. For some methods, a direct comparison of

parameters is not possible since they may sharerdint parameter spaces. We adopt this approach to simplify the
parameter selection strategy.

Method d w | n e r k b
SNF 7T 7 17 17 7 7 7
Mashup 7T 7 17 7 1 7 7 7
DeepNF 7 7 17 7 7

MultiNet T 7 1 17 7 7
Multi-n2v 7T 17 1 1 1 7
OhmNet 7T 7 1 1T 7 7
MultiVERSE 7 7 7 7 7
Graph2GO 7 7 7 7 7 17 7
BraneExp 7T 7 17 17 17 7
BraneMF 7T 7 17 7 7 7 7

Table S3:Overview of parameters considered for tuning Green coloured ticks indicate that the method depends on the respective parameters.
Red crosses show that method does not depend on a particular parameter.

1. Embedding sized): size of protein feature vector. Its dimensionality is typically much lower than that of the
ambient space. We chode2 128 256,512, 1024

2. Walk length [): it is a parameter to select the length of a node set you would like to obtain while performing
random walks on a graph. For instanceyalk of length 5 is de ned as “proteinA proteinB proteinC proteinD
proteinX”. We chosé 2 f15; 20g

3. Window size W): the number of nodes (proteins) that will be used to determine the context of each node (protein).
For instance, in avalk of length 3, such as, “proteinA proteinB proteinC”, a window size of 2 would mean your
samples are like (proteinA proteinB) or (proteinB proteinC). We chwoge2; 4; 6; 8; 109

4. Number of walksif): this parameter allows to select the number of random walks that will be sampled per node
(protein). We chosa 2 f10; 20g
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5. Learning rate (): it is a hyper-parameter that controls how much we are adjusting the weights in the learning
process with respect to the gradient of the loss function. A lowespresents a smaller step along the downward
slope. We chose 2 f0:1; 0:01; 0:001; 0:0001g

6. Number of epochse|: an epoch is one learning cycle where the learner sees the whole training data set and
calculates the error rate. We chas2 f60; 80g

7. Restart probabilityr(: this parameter is used in models that rely on Random Walks with Restart (RWR). While
performing random walks, at each iteration, the walker can also restart by jumping to any randomly selected node
in the graph, with a de ned restart probability. We chos2f0:8; 0:85; 0:9; 0:959

8. Gamma (): it is a weighting factor used by our BraneMF model. It represents the power to be applied on
the singular values () used for the computation of the embeddings (please see line 5 of Alg. 1). We chose

2 f0;0:25;0:50; 0:75; 19

9. Number of sample]: it is the parameter to choose the number of times we would like to perform Random

Walk with Restart (RWR). We chose2 f2; 3; 4; 6g
10. Batch sizelf): it is the number of samples that will be used for training at one time. We dhad482; 64; 128y

Method Parameters Method Parameters

SNF k=6;,w=10 SNF k=6;w=10

Mashup r=0.8 Mashup r=0:.95

deepNF b=64;k=4;r = 0:95;e= 80 deepNF b=64;k=4;r =0:95;e= 80

MultiNet | =20;n=20;w=10 MultiNet | =20;n=20;w=10

Multi-n2v | =20;n=20;w=10 Multi-n2v | =10;n=20;w=2

OhmNet w=10;I = 20;n= 10 OhmNet w=2;l =15;n=10

MultiVERSE w=10;k=4;r = 0:95 =0:01 MultiVERSE w=2;k=2;r =0:8; =0:01

Graph2GO e=80; =001 Graph2GO e=80; =001

BraneExp | =20;n=10;w= 10 BraneExp | = 15;n=20;w= 10

BraneMF w=10; =1 BraneMF w=2;, =05
Table S4:Parameter selection I.The table shows the best per- Table S5:Parameter selection Il. The table shows the best per-
forming parameters for the clustering and protein function predic- forming parameters for the PPI prediction and network reconstruc-
tion tasks. tion tasks.
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5. Gene Ontology (GO) enrichment for clusters

5.1. Enrichment Score (ES)
Consider a gene s€, wherek = 1;:::;K. Gy consists of a list of, genes g;), i.e.,Gx = fgj : j = 1;:::;mg
Each gene in the set is represented in the rankedl.liSthe set of genes outside Gk is de ned as a5y = fgj :

ES= sup F* F&
lin

where sup] is the supremuri,represents the position in likt and

FG« = Itzljstj Lgenezcy
' w1J8) Lgene2c,
F-ék _ Itzljstj :lgenezék_
' n ng '
wherel is the indicator function for the membership in a given gene 56t given by the correlation afy; and
weighted by [39].

5.2. Z-Score
The Z-score for gene s& is given by:
X
Z-score= pn_k'Ewith t= 1 ti;
M iz,
whereng is number of genes iGy andt; is thet-statistic that is referred to signal to noise ratio for each gene.
The detailed description of the scoring metrics are given in [39, 19]

5.3. Results

Method k=40 k=60 k=80 k=100
Z-score
SNF 173 0:.07 1:.80 0:03 177 001 1:81 0:.02
Mashup 1:85 014 1.88 012 1:84 0.03 192 0.02
deepNF 210 007 209 006 203 001 202 003
MultiNet 1:87 0:03 1:.99 0:.02 1:97 0:.02 2:.05 0:02
Multi-n2v 262 022 205 006 192 004 196 002
OhmNet 1:.96 003 192 002 203 001 199 001
MultiVERSE  1:93 0:04 1:97 002 200 003 206 002
BraneExp 1:98 0:04 198 004 199 002 200 0:02
Graph2GO 206 0:04 189 004 202 003 204 0.02
BraneMF 1:.92 004 193 0.03 198 003 201 003

Table S6:GO enrichment analysis of clustersPerformance of BraneMF compared to the baselines, measured by Z-scores. Standard deviation is
computed for all 20 runs d&-means clustering. Parameters: 1;w = 10;d = 128 for BraneMF, Sec. 4 for baselines.
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