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What We Will Cover

• Motivate the problem with real-life applications
• Go through different approaches 
• Describe the most prominent/representative solution of each 

approach 
• Briefly outline similar solutions
• Mention theory but won't dive deep into it
• Focus on the advantages and disadvantages

Let’s make interactive,
so please ask questions whenever you want!
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Part I. Introduction

Part II. Traditional influence maximization

Part III. Influence and diffusion learning

Part IV. Learning influence maximization

Part V. Online influence maximization

Part VI. Summary and open challenges

Outline of the Tutorial
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Part I. Introduction
• What is influence
• Exemplary applications
• Models of information diffusion
• Influencer identification
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Influence and Information Propagation

Individuals are connected, performing activities
friends

collaborators
followers

subscribers
…

post
comment

share, retweet
like
…

Influence aims to measure the impact of interactions 
on the actions of individuals
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Twitter & Facebook Post Sharing

8



Influence and Diffusion in Viral Marketing (1/2)

• Product adoption by the “word of mouth” effect
– Senders and followers of recommendations

[Leskovec et al., ACM TWeb ‘07], [Aral and Walker, Management Science ‘11] 9



Influence and Diffusion in Viral Marketing (2/2)

[Leskovec et al., ACM TWeb ‘07], [Aral and Walker, Management Science ‘11] 10



Social Media Influence and Marketing

Buy Channel

Followers

Social Media Influence

[Prakash and Ramakrishnan, KDD ‘16]

Vote for X
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News and Rumor Spreading

[Vosoughi et al., Science ‘18]

False news spread faster than the truth

12



Can someone use online social networks to shape a massive
behavioral change?

Facebook’s ‘Intent to Vote’ Experiment (1/2)

• A simple news feed post was used to motivate voting
• Users could claim they voted by pressing “I voted” and access 

further information about the elections

• 61 million FB users split in three randomized
groups:
– Simple message (611K): the message

included the count of FB users who
reported voting

– Social message (60M): The message
included a list of the users’ friends that
have also voted appears

– Control group (613K): no message

[Bond et al., Nature ‘12] 13



Facebook’s ‘Intent to Vote’ Experiment (2/2)

• Users who received the social message were more likely to click    
“I voted” than users with the simple message 

• Friends of users who received the social message were more likely 
to vote than friends of users with no message

[Bond et al., Nature ‘12]

Moreover, the scale of the number of users, their friendship
connections and the potential voters in a given election is very large.
We estimated the per-user effect (the per-friend effect multiplied by
the average number of friends per user) and the total effect (the
per-user effect multiplied by the total number of users) on the
behaviour of everyone in the sample (see Supplementary Informa-
tion). The results suggest that friends generated an additional
886,000 expressed votes (11.4%, null 95% CI 21.1% to 1.1%),
and close friends generated a further 559,000 votes (10.9%, null
95% CI –0.3% to 0.3%). In the Supplementary Information we also
show that close friends of close friends (2 degrees of separation)
generated an additional 1 million expressed votes (11.7%, null 95%
CI –0.8% to 0.9%). Thus, the treatment clearly had a significant impact
on political self-expression and how it spread through the network,
and even weak ties seem to be relevant to its spread.
However, the effect of the social message on real-world validated

vote behaviour and polling-place search wasmore focused. The results
suggest that close friends generated an additional 282,000 validated
votes (11.8%, null 95% CI –1.3% to 1.2%) and an additional 74,000
polling-place searches (10.1%, null 95% CI –0.1% to 0.1%), but there
is no evidence that ordinary friends had any effect on either of these
two behaviours. In other words, close friendships accounted for all of
the significant contagion of these behaviours, in spite of the fact that
they make up only 7% of all friendships on Facebook.
To put these results in context, it is important to note that turnout

has been steadily increasing in recent US midterm elections, from
36.3% of the voting age population in 2002 to 37.2% in 2006, and to

37.8% in 2010. Our results suggest that the Facebook social message
increased turnout directly by about 60,000 voters and indirectly
through social contagion by another 280,000 voters, for a total of
340,000 additional votes. That represents about 0.14% of the voting
age population of about 236 million in 2010. However, this estimate
does not include the effect of the treatment on Facebook users who
were registered to vote but who we could not match because of
nicknames, typographical errors, and so on. It would be complex to
estimate the number of users on Facebook who are in the voter record
but unmatchable, and it is not clear whether treatment effects would be
of the samemagnitude for these individuals, so we restrict our estimate
to the matched group that we were able to sample and observe. This
means it is possible that more of the 0.60% growth in turnout between
2006 and 2010 might have been caused by a single message on
Facebook.
The results of this study havemany implications. First and foremost,

online politicalmobilizationworks. It induces political self-expression,
but it also induces information gathering and real, validated voter
turnout. Although previous research suggested that online messages
do not work19, it is possible that conventional sample sizes may not
be large enough to detect the modest effect sizes shown here. We
also show that social mobilization in online networks is significantly
more effective than informational mobilization alone. Showing
familiar faces to users can dramatically improve the effectiveness of
a mobilization message.
Beyond the direct effects of online mobilization, we show the

importance of social influence for effecting behaviour change. Our
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Figure 2 | The effect of mobilization treatment that a friend received on a
user’s behaviour. a–d, A validation study shows that at increasing levels of
interaction, Facebook friends are more likely to have a close real-world
relationship (a; see also the Supplementary Information). As the interaction
increases, so does the observed per-friend effect of friend’s treatment on a user’s

expressed voting (b), validated voting (c) and polling-place search (d). Blue
diamonds indicate the observed treatment effect. Horizontal grey bars show the
null distribution derived from simulations of identical networks in which the
topology and incidence of the behaviour and treatment are the same but the
assignments of treatment are randomly reassigned.
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• As the interaction increases, so 
does the observed per-friend 
effect of friend’s treatment on a 
user’s expressed voting 

Online messages might influence a 
variety of offline behaviours
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Information Propagation is Almost Everywhere

• Social collaboration
• Information Diffusion
• Viral Marketing
• Epidemiology and Public Health
• Cyber Security
• Human mobility 
• Games and Virtual Worlds 
• Bioinformatics
• …
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Research Theme

DATA
Large real-world networks 

& propagations

ANALYSIS
Understanding

POLICY/
ACTION
Managing

[Prakash and Ramakrishnan, KDD ‘16] 16



Research Theme – Social Media

DATA
Modeling Tweets 

spreading

POLICY/
ACTION
How to do 

better 
marketing?

ANALYSIS
# cascades in 

future?

[Prakash and Ramakrishnan, KDD ‘16] 17



Algorithmic tools
and

Machine Learning models
to

understand
maximize
predict

influence spreading
in

social and information networks

Opportunities for Data Mining and Maching Learning

Part I
Part II

Part III
Part IV
Part V
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What is it All About?

Part I. Basic models
for information diffusion and 

detection of influential spreaders

Part II. Influence maximization
find a seed set S of size k that 
maximizes the infuence spread

Part III. Influence and diffusion 
learning

analyze real information cascades to 
boost influence maximization

Part IV. Machine learning 
models

learn how to predict and maximize 
influence

Part V. Online influence 
maximization

learning influence probabilities 
and maximizing influence 

simultaneously

19



Information diffusion models



Information Cascades

• “Contagion” that spreads over the edges of the network
• It creates a propagation tree, i.e., a diffusion cascade

Information cascade 
(propagation graph)Network

21



How Do We Model Influence/Diffusion?

• Decision based models
– Models of product adoption, decision making

• A node observes decisions of its neighbors 
and makes its own decision

– Example:
• You attend this tutorial if k of your friends do so too

• Probabilistic models
– Models of influence or disease spreading

• An infected node tries to “push”
the contagion to an uninfected node

– Example:
• You are influenced with some probability 

from each active (i.e., influenced) neighbor                  
in the network

22[Easley and Kleinberg, Networks, Crowds, and Markets ‘10]



Independent Cascade (IC) model



Independent Cascade Model (1/2)

• Initially some nodes S are active
• Each edge (u,v) has probability (weight) puv

• When node u becomes influenced
– It activates each out-neighbor v with probability puv

• Influence spreads through the network
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Each activated node 
has a single chance to
activate its neighbors

[Kempe et al., KDD ‘03] 24



Independent Cascade Model (2/2)

• The model is simple but requires 
parameters proportional to the # of 
edges
– Estimating influence weights from 

the data
– Next part of the tutorial
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• Solution 1: Make all edges have the same weight
– Simplistic and unrealistic approach is many practical applications
– Similar to the SIR (Susceptible-Infected-Recovered) model in 

epidemiology

• Solution 2: Degree-based probabilities or similar
– E.g., edge from u to v has probability 1/ kv of activating v (kv : degree of v)

25



Linear threshold model (LT)



• A node v has a random threshold θv  ~ U[0,1]
• A node v is influenced by each neighbor w according to a weight

bvw such that 

• A node v becomes active when at least θv fraction of its neighbors 
are active

Linear Threshold Model

θv: fraction of neighbors of v
that should be active in 

order for v to become active

X

w2Nb(v)

bvw  1

X

w2X(v)

bvw � ✓v

X(v): set of active 
neighbors of v

[Kempe et al., KDD ‘03] 27



Example

Inactive Node

Active Node

Threshold

Active neighbors

vw 0.5

0.3
0.2

0.5

0.1
0.4

0.3 0.2

0.6

0.2

Stop!

U

X

X

w2X(v)

bvw � ✓vBecome active if:
28



Identification of influential spreaders



Identification of Influential Nodes: the Process (1/2)

• Typically, a two-step approach:
1. Consider a topological or centrality criterion of the nodes of the 

network
2. Rank the nodes accordingly
3. The top-ranked nodes are candidates for the most influential 

ones
4. Simulate the spreading process over the network to examine 

the performance of the chosen nodes
• E.g., using the IC or the LT model

[Sei and Makse ’13]
30



Identification of Influential Spreaders

• Straightforward approach: consider degree centrality
– High degree nodes are expected to be good spreaders
– Hub nodes can trigger big cascades

THE SCALE-FREE PROPERTY 10

Poisson vs. Power-law Distributions
Figure 4.4

(d)

(b)(a)

(c)

(a) Comparing a Poisson function with a 
power-law function (ਠ= 2.1) on a linear plot. 
Both distributions have ࢭk10  =ࢮ.

(b) The same curves as in (a), but shown on a 
log-log plot, allowing us to inspect the dif-
ference between the two functions in the 
high-k regime. 

(c) A random network with ࢭk3 =ࢮ and N = 50, 
illustrating that most nodes have compara-
ble degree k ࢭݍkࢮ. 

(d) A scale-free network with ਠ=2.1 and ࢭkࢮ= 
3, illustrating that numerous small-degree 
nodes coexist with a few highly connected 
hubs.

The Largest Hub

All real networks are finite. The size of the WWW is estimated to be N ݍ 
1012 nodes; the size of the social network is the Earth’s population, about N 
-These numbers are huge, but finite. Other networks pale in com .109 × �7ݍ
parison: The genetic network in a human cell has approximately 20,000 
genes while the metabolic network of the E. Coli bacteria has only about a 
thousand metabolites. This prompts us to ask: How does the network size 
affect the size of its hubs? To answer this we calculate the expected maxi-
mum degree, kmax, called the natural cutoff of the degree distribution pk. It 
represents the expected size of the largest hub in a network.

It  is instructive to perform the calculation first for the exponential dis-
tribution 

For a  network with minimum degree kmin, the normalization  condition                    

provides C = ਨeਨkmin. To calculate kmax we assume that in a network of N 
nodes we expect at most one node in the (kmax, ∞) regime (ADVANCED TOPICS 
3.B). In other words the probability to observe a node whose degree exceeds 
kmax is 1/N:

(4.16)

(4.15)∫ =
∞ p k dk( ) 1
kmin

∫ =
∞ p k dk N( ) 1 .
kmax
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p(k) = Ce��k .

• However: degree is a local criterion
– Bad instance: star subgraph

• Core-periphery structure of real-world networks

Nodes of
equal degree (8)
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Degeneracy and k-Core Decomposition

3-core

2-core

1-core

Core number ci = 1

Core number ci = 2

Core number ci = 3

Graph Degeneracy �⇤(G) = 3

G0 = G

G1 = 1-core of G

G2 = 2-core of G

G3 = 3-core of G

G0 ◆ G1 ◆ G2 ◆ G3

Fast detection of dense and cohesive subgraphs

[Malliaros et al., VLDB Journal ’20][Seidman, Social Networks ’83] 32



Degree 96
Core number 63

Degree 96
Core number 26

Node A
Node B

[Kitsak et al., Nature Physics ‘10]

• Strategically placed nodes, as detected by the 
k-core decomposition are able to spread 
information to a larger portion of the graph

• The core number is a better spreading 
predictor compared to the degree 

The k-core Decomposition Finds Good Spreaders
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Fraction p (%)
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ε(

p)ε(p) =1− Mcore(p)
Meff (p)

k-core

degree

betweenness

How Close to the Optimal Spreading?

• Compute the imprecision function ε(p) that tests how close is each metric 
to the optimal spreading
– For a given fraction p:
1. Find p% of the most efficient spreaders and compute the average total spreading Meff

2. Find p% nodes with the highest core number and compute the average total spreading 
Mcore

3. Repeat the same for degree and betweenness centrality

• The k-core is the most accurate spreading 
predictor

• Degree outperforms the global 
betweenness centrality

34



• The k-core decomposition often returns a relatively large number of 
candidate influential spreaders
– Only a small fraction corresponds to highly influential nodes

• How to further refine the set of the most influential nodes?
• Apply the K-truss decomposition [Cohen, TR ’08], [Wang and Cheng, VLDB ‘12]

– Triangle-based extension of the k-core decomposition
– Each edge of the K-truss subgraph participates in at least K-2 triangles

Set C
Set T

6

Truss set T

C: set of nodes in the maxima k-core subgraph
T: set of nodes in the maximal K-truss subgraph 

K-truss Decomposition (1/2)

[Malliaros, Rossi & Vazirgiannis, Scientific Reports ’16] 35



• The truss method achieves higher 
infection rate during the first steps

• Better and faster spreading

K-truss Decomposition (2/2)

• truss: avg. spreading of the nodes of T
• core: avg. spreading of the nodes of C – T 
• top deg: avg. spreading of the |C – T| top 

degree nodes

[Malliaros, Rossi & Vazirgiannis, Scientific Reports ’16] 36

Introduction and Research Overview Identification of Influential Spreaders Future Research

Average Number of Infected Nodes

Time Step
Method 2 4 6 8 10 Final step � Max step

EMAIL- truss 8.44 46.66 204.08 418.77 355.84 2, 596.52 136.7 33
ENRON core 4.78 31.97 152.55 367.28 364.13 2, 465.60 199.6 37

top degree 6.89 34.13 155.48 360.89 357.08 2, 471.67 354.8 36

EPINIONS truss 4.17 19.70 75.04 204.14 329.08 2, 567.69 227.8 37
core 3.45 14.72 55.27 158.56 280.03 2, 325.37 327.2 43

top degree 4.22 16.03 58.84 166.23 289.49 2, 414.99 331.7 47

WIKI- truss 2.92 6.92 15.27 28.73 42.46 560.66 114.9 52
VOTE core 1.92 4.78 10.65 20.66 32.40 466.01 104.5 57

top degree 2.43 5.46 12.05 23.05 35.55 502.88 104.5 62

EMAIL- truss 11.62 62.25 240.97 584.87 725.42 5, 018.52 487.94 36
EUALL core 9.85 40.82 158.72 433.81 644.76 4, 579.84 498.71 38

top degree 17.96 39.93 144.69 503.18 548.25 4, 137.56 1, 174.84 39

⌅ Performance of truss method
⇤ Higher infection rate during the first steps of the process
⇤ The total number of infected nodes is larger
⇤ The epidemic dies out earlier

24/37 Fragkiskos D. Malliaros UCSD Mining Social and Information Networks



• Combine centrality criteria with models of information 
propagation

• The core decomposition provides an effective way to detect 
influential spreaders
– Outperforms more  ‘complex’ centrality criteria
– How to select multiple influential spreaders?

• Heuristic methods
– No theoretical guarantees about the performance of the metrics
– E.g., what will happen if all the nodes of a graph have ~ the same core 

number?

Part I Summary

37



Part I. Introduction

Part II. Traditional influence maximization

Part III. Influence and diffusion learning

Part IV. Learning influence maximization

Part V. Online influence maximization

Part VI. Summary and open challenges

Outline of the tutorial
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Part II. Traditional IM
• The IM problem
• The Greedy algorithm
• Scalable algorithms (CELF, Reverse Influence 

Sampling, Sketch-based Influence Maximization)
• Overview of scalable heuristics



• S: is the initial active set
• σ(S): The expected size of final active set (expected influence)

• Set S is more influential if σ(S) is larger

Most Influential Set of Nodes

graph G
c

… influence set 
Xu of node u

a

b
d

�({a, b}) < �({a, c}) < �({a, d})

<latexit sha1_base64="VjRemzuANe6qCzcmn6zchcmI8vY="></latexit>

[Domingos and Richardson, KDD ‘01] 40



The Influence Maximization Problem

Problem (k is user-specified parameter - budget)

• Given a graph G=(V, E) and a diffusion model to simulate spreading
• Find a seed set S of k nodes that maximizes spreading σ(S)

– The expected influence spread
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[Kempe et al., KDD ‘03]

Complexity of IM
• The IM problem is NP-Hard under both the 

IC and LT models
– Reduction from instances of the set cover 

problem

�(S) =
X

g✓G

pg�g(S)

<latexit sha1_base64="3bXqiEh7XNWQnNEo3yQX6ErzzwI="></latexit>
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Properties of the Spread Function

• Function σ(·) has with two properties:
– σ(·) is monotone: (activating more nodes doesn’t hurt)

Marginal gain of adding a 
node to a small set

Marginal gain of adding a 
node to a large set

�(S [ {v}) � �(S),8v 2 V,8S ✓ V

<latexit sha1_base64="vbDwAvDERbcGHYbt7OS1crS7wSo=">AAACT3icdVBNTxsxEPWmUAL9ILTHXkZElUBCKy9aINyi9lL1RFUSkOIo8jqTYMXrXWxvRLTKf+pf4YLEif6CXntDOCG0gNqRLL15b0Zv/JJcSesovQ4qL5aWX65UV9devX7zdr228a5ts8IIbIlMZeY04RaV1Nhy0ik8zQ3yNFF4kow+z/STMRorM33sJjl2Uz7UciAFd57q1b4yK4cp3/oOTBQ5sHLMptvAhggPwvYOsEFmuFIwBiY1tP8SfssWiUWH59Du1eo0pAd0r9EAGkY0OtyPPIh9vxtDFNJ51cmijnq1X6yfiSJF7YTi1nYimrtuyY2TQuF0jRUWcy5GfIgdDzVP0XbL+Z+n8NEzffB3+KcdzNnHGyVPrZ2kiZ9MuTuzz7UZ+S+tU7hBo1tKnRcOtbg3GhQKXAazAKEvDQqnJh5wYaS/FcQZN1w4H/MTl/xidpr94+IDekgB/g/au2EUh/G3uN78tIiqSj6QTbJFInJAmuQLOSItIsgPckVuyM/gMvgd3FYWo5VgAd6TJ1VZvQPFfbKM</latexit>

�(S [ {v}) � �(S) � �(T [ {v}) � �(T)

<latexit sha1_base64="btv6CDb2mVp73ZVp9l8Z2dCjQvc="></latexit>

If σ(·) is monotone and submodular, then we can have an 
approximate solution with theoretical guarantee 

42[Kempe et al., KDD ‘03]

– σ(·) is submodular: (activating each additional node helps less)
adding an element to a set gives less improvement 
than adding it to one of its subsets:

S ✓ T ✓ V

<latexit sha1_base64="0nGyNWwIyejDd9f8P5U6vF4YOoY=">AAACHnicdVDLSgMxFM34rPVVdSVugkVwNWTKaOuu6MZlxb6gLSWT3rahmYdJRiyl+Ctu3OpfuBO3+hN+g+lDaUUPBM49917OzfEiwZUm5MNaWFxaXllNrCXXNza3tlM7u2UVxpJBiYUilFWPKhA8gJLmWkA1kkB9T0DF612M+pVbkIqHQVH3I2j4tBPwNmdUG6mZ2r/GdRV7CjTc4OIMLzdTaWKTLDnJ5TCxHeKcnTqGuKbOuNixyRhpNEWhmfqst0IW+xBoJqhSNYdEujGgUnMmYJisxwoiynq0AzVDA+qDagzGXxjiI6O0cDuU5gUaj9XZjQH1ler7npn0qe6q372R+FevFut2rjHgQRRrCNjEqB0LrEM8ygO3uASmRd8QyiQ3t2LWpZIybVKbc4nuRqepHxcT0HcK+H9SztiOa7tXbjp/Po0qgQ7QITpGDsqiPLpEBVRCDN2jR/SEnq0H68V6td4mowvWdGcPzcF6/wKFNKKZ</latexit>



Submodularity of Influence Spread σ(S)

c

b e

g

f
h

i

a d
• The live-edge model

– Flip all the coins at the beginning and 
record which edges are activated 
successfully
• Sample a random subgraph

– Now we have a deterministic graph
– Possible world of a probabilistic graph

• 2|E| possible outcomes

• What is the influence set Xu of node u?
– The set of nodes reachable by live-edge 

paths from u

Influence sets
for realization i :
Xai = {a,f,c,g}
Xbi = {b,c}, 
Xci = {c}
Xdi= {d,e,h}
…

43[Kempe et al., KDD ‘03]



The Greedy Approximation Algorithm

The Greedy Algorithm
Input: graph G=(V, E), parameter k and an influence model
Output: set S
• Start with 
• While

– Take node u that
– Let  

Theorem: The Greedy algorithm is a (1 – 1/e) approximation
– The algorithm will find a set S for which σ(S) > 0.63*σ(OPT), 

where OPT is the globally optimal set
– The resulting set S activates at least (1- 1/e) > 63% of the 

number of nodes that any size-k set S could activate
– (e is the base of the natural logarithm, e ≈ 2.71)

|S| < k

<latexit sha1_base64="jNge7cSHcFmUk+NbmDtM6SLttZQ=">AAACC3icdVDLSgMxFM34rPVVdekmWARXQ6aMtoKLohuXFe0D2qFk0rQNzWSGJCOWaT/BjVv9C3fi1o/wJ/wGM20VK3ogcO6593Jujh9xpjRC79bC4tLyympmLbu+sbm1ndvZrakwloRWSchD2fCxopwJWtVMc9qIJMWBz2ndH1yk/fotlYqF4kYPI+oFuCdYlxGsjdQYXY/gGRxk27k8slERHZdKENkOck5PHENcUxdc6NhogjyYodLOfbQ6IYkDKjThWKmmgyLtJVhqRjgdZ1uxohEmA9yjTUMFDqjyksm9Y3holA7shtI8oeFE/bmR4ECpYeCbyQDrvvrdS8W/es1Yd0tewkQUayrI1Kgbc6hDmH4edpikRPOhIZhIZm6FpI8lJtpENOcS3aWnqW8XE9BXCvB/UivYjmu7V26+fD6LKgP2wQE4Ag4ogjK4BBVQBQRw8AAewZN1bz1bL9brdHTBmu3sgTlYb58a9Jrt</latexit>

arg max
u2V\S

� (S [ {u}) � � (S)

<latexit sha1_base64="wrCfBCK9y7d+s4drD5cjOyTv9sw="></latexit>

S S [ {u}

<latexit sha1_base64="lp817tzULMWmd3ond5xIVp50tt8="></latexit>

S ;

<latexit sha1_base64="BKv6SrR/1Ti60g56VKaTrawSvgw=">AAACG3icdVDLSgMxFM34rO+q4MZNsAiuhkwZbd0V3bhUtK3QlpJJ72ho5kFyRy3VT3HjVv/Cnbh14U/4Daa1iooeCJycey/ncIJUSYOMvTpj4xOTU9O5mdm5+YXFpfzySs0kmRZQFYlK9GnADSgZQxUlKjhNNfAoUFAPuvuDef0CtJFJfIK9FFoRP4tlKAVHK7Xza8e0qSBErnVySZsQpdgzgO18gbmsxLbLZcpcj3m7O54lvv0Xfeq5bIgCGeGwnX9rdhKRRRCjUNyYhsdSbPW5RikU3Mw2MwMpF11+Bg1LYx6BafWH+W/oplU6NEy0fTHSofr9os8jY3pRYDcjjufm92wg/jVrZBiWW30ZpxlCLD6MwkxRTOigDNqRGgSqniVcaGmzUnHONRdoK/vhkl4NopkvF1vQZwv0f1Irup7v+kd+obI3qipH1skG2SIeKZEKOSCHpEoEuSZ35J48OLfOo/PkPH+sjjmjm1XyA87LO0cAogo=</latexit>

44[Kempe et al., KDD ‘03]



• How to evaluate σ(S) for a set S?
– Exact computation of σ(S) is #P-hard (class of counting 

problems) 

• Very good estimation by simulation
– Use Monte Carlo simulations (sampling-based approach)
– Repeating the diffusion process often enough (polynomial in n)
– Greedy algorithm is now a (1-1/e - ε)-approximation, ε>0
– ε depends on the number of possible worlds (simulations)

Evaluating σ(S) and Overall Complexity

• Complexity of the Greedy algorithm: O(n·k·R·m)
– n: number of nodes
– m: number of edges
– k: size of the seed set
– R: number of simulations (i.e., number of possible words)

45



Scalable Algorithms – CELF



• In step i+1 of the Greedy algorithm

– Node u maximizes the marginal gain

CELF (Cost-Effective Lazy Forward Selection)

[Leskovec et al., KDD ‘07]

Si+1 = arg max
u
� (Si [ {u}) � � (Si)

<latexit sha1_base64="R4AOiIXqs2or/Ur4ZY3EIqj8hHc=">AAACXHicdVBBaxQxGM1Oq9bW6raCl16CS6EiDpky2vVQKPXisaLbLWyWIZPNzIYmM0PypewyzE/zh/Tixav1N5jZbsXa9kHg5b338X28tFLSAiGXnWBl9dHjJ2tP1zeebT5/0d3aPrWlM1wMeKlKc5YyK5QsxAAkKHFWGcF0qsQwPf/U+sMLYawsi28wr8RYs7yQmeQMvJR0h1+TWr6NmkMKYgY1M3lDNZvhpHYNplbmmlElMthrc17hrqK1ow01Mp/Cm3d3Iksj6fZISA7I+34fkzAi0ccPkSex/+/HOArJAj20xEnS/U0nJXdaFMAVs3YUkQrG/iCQXIlmnTorKsbPWS5GnhZMCzuuFwU0eNcrE5yVxr8C8EL9d6Jm2tq5Tn1SM5ja/71WvM8bOcj641oWlQNR8OtFmVMYSty2iSfSCA5q7gnjRvpbMZ8ywzj4zm9tqWbtafbvFl/QTQv4YXK6H0ZxGH+Je0fHy6rW0A56jfZQhA7QEfqMTtAAcfQd/US/0FXnR7AabASb19Ggs5x5iW4hePUH95a5Yw==</latexit>

�i(u) = � (Si [ {u}) � � (Si)

<latexit sha1_base64="oE1e2stczTj1mATVdBNX2uqT4Eo=">AAACTnicdVBNbxMxEPWmQNMPaFqOvVhEldIDK2+10PRQqYJLeyuCtJXiaOV1ZhOr3g/Z46rRKr+Jv8KFAxf4Bxx7q8BJA6JAR7L05r0ZvfFLK60sMvYlaCw9evxkubmyurb+9NlGa3PrzJbOSOjJUpfmIhUWtCqghwo1XFQGRJ5qOE8v38708yswVpXFB5xUMMjFqFCZkgI9lbRO+BA0ikR13C49pNyqUS64hgw775NaTSmXruK141Nu1GiMuy//GVkISavNQrbPXnW7lIURiw5eRx7Evt+LaRSyebXJok6T1nc+LKXLoUCphbX9iFU4qIVBJTVMV7mzUAl5KUbQ97AQOdhBPf/ylO54Zkiz0vhXIJ2zf27UIrd2kqd+Mhc4tn9rM/J/Wt9h1h3UqqgcQiHvjDKnKZZ0lh8dKgMS9cQDIY3yt1I5FkZI9Cnfc6muZ6fZ3y4+oF8p0IfB2V4YxWH8Lm4fvVlE1STb5AXpkIjskyNyTE5Jj0jykXwmX8m34FNwE9wGP+5GG8Fi5zm5V43mT1DBtZg=</latexit>

• From the submodularity property, we have that

– For every u:

� (Si [ {u}) � � (Si) � �
⇣
Sj [ {u}

⌘
� �
⇣
Sj
⌘

for i < j

<latexit sha1_base64="JcQelNxM7QqNmOxk+moBMxwogag="></latexit>

�i(u) � � j(u), for i < j since Si ✓ Sj

<latexit sha1_base64="mTa6piXgeDhsuHYdSBb0A2XNpa4=">AAACVHicdVDBThRBEO0dRBAVVj16qbgxwcRMesgAa8KB6IWbGF0g2dlMenprll56eobuGsJmsp/lr5gYr3DlCzzYuyxGjNbpvVdVeVUvq7RyxPn3VrD0YPnhyuqjtcdPnq5vtJ89P3JlbSX2ZKlLe5IJh1oZ7JEijSeVRVFkGo+zsw+z/vEFWqdK84UmFQ4KMTIqV1KQl9L2x2SImkSqNus3kIwQFnzs+VtICC+pgby0MAW1B+M7xSkj0WufUwWJqzOHhOeejdN2h4d8l293u8DDiEfvdiIPYs+3YohCPq8OW9Rh2r5JhqWsCzQktXCuH/GKBo2wpKTG6VpSO6yEPBMj7HtoRIFu0Mwfn8Jrrwzn5+WlIZirf240onBuUmR+shB06v7uzcR/9fo15d1Bo0xVExp5a5TXGqiEWYowVBYl6YkHQlrlbwV5KqyQ5LO+51Jdzk5zv118QHcpwP/B0VYYxWH8Ke7sv19Etcpesldsk0Vsl+2zA3bIekyyr+wHu2LXrW+tn8FSsHw7GrQWOy/YvQrWfwHQL7Qh</latexit>

The marginal gains         only srink or 
remain the same as i increases

�i(u)

<latexit sha1_base64="1kI9SHsRN+UzpfPm4cwswtlTVE4=">AAACDnicdVDLSgMxFM34rPVVdekmWIS6GTJltHVXdOOygn3AdCiZTKYNzTxIMmIZ+g9u3OpfuBO3/oI/4TeYaatY0QOBc8+9l3NzvIQzqRB6N5aWV1bX1gsbxc2t7Z3d0t5+W8apILRFYh6Lrocl5SyiLcUUp91EUBx6nHa80WXe79xSIVkc3ahxQt0QDyIWMIKVlpyeT7nCfVZJT/qlMjJRDZ3W6xCZFrLOzyxNbF1XbWiZaIoymKPZL330/JikIY0U4VhKx0KJcjMsFCOcToq9VNIEkxEeUEfTCIdUutn05Ak81ooPg1joFyk4VX9uZDiUchx6ejLEaih/93Lxr56TqqDuZixKUkUjMjMKUg5VDPP/Q58JShQfa4KJYPpWSIZYYKJ0SgsuyV1+mvx20QF9pQD/J+2qadmmfW2XGxfzqArgEByBCrBADTTAFWiCFiAgBg/gETwZ98az8WK8zkaXjPnOAViA8fYJYQGcww==</latexit>

u

di(u) ³ dj(u)

Activating node u in step i helps more 
than activating it at step j (j>i)
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• Idea: use marginal gain     as an upper-bound on      (j > i)

CELF – Lazy Hill Climbing

�i

<latexit sha1_base64="TCIkBuYVixITCLH7ZRI8jnoGTgU=">AAACC3icdVDLSgMxFM34rPVVdekmWARXQ6aMtu6KblxWsA9oh5LJZNrQTGZIMmIZ+glu3OpfuBO3foQ/4TeYaatY0QOBc8+9l3Nz/IQzpRF6t5aWV1bX1gsbxc2t7Z3d0t5+S8WpJLRJYh7Ljo8V5UzQpmaa004iKY58Ttv+6DLvt2+pVCwWN3qcUC/CA8FCRrA2UqcXUK5xn/VLZWSjKjqt1SCyHeScnzmGuKauuNCx0RRlMEejX/roBTFJIyo04ViproMS7WVYakY4nRR7qaIJJiM8oF1DBY6o8rLpvRN4bJQAhrE0T2g4VX9uZDhSahz5ZjLCeqh+93Lxr1431WHNy5hIUk0FmRmFKYc6hvnnYcAkJZqPDcFEMnMrJEMsMdEmogWX5C4/TX27mIC+UoD/k1bFdlzbvXbL9Yt5VAVwCI7ACXBAFdTBFWiAJiCAgwfwCJ6se+vZerFeZ6NL1nznACzAevsEpaSb3w==</latexit>

� j

<latexit sha1_base64="OM69oVtzuhp4u9LvRJZOSrD1QmE=">AAACC3icdVDLSgMxFM3UV62vqks3wSK4GjJltHVXdOOygn1AO5RMJtPGZjJDkhFL6Se4cat/4U7c+hH+hN9gpq1iRQ8Ezj33Xs7N8RPOlEbo3cotLa+sruXXCxubW9s7xd29popTSWiDxDyWbR8rypmgDc00p+1EUhz5nLb84UXWb91SqVgsrvUooV6E+4KFjGBtpHY3oFzj3k2vWEI2qqCTahUi20HO2aljiGvqsgsdG01RAnPUe8WPbhCTNKJCE46V6jgo0d4YS80Ip5NCN1U0wWSI+7RjqMARVd54eu8EHhklgGEszRMaTtWfG2McKTWKfDMZYT1Qv3uZ+Fevk+qw6o2ZSFJNBZkZhSmHOobZ52HAJCWajwzBRDJzKyQDLDHRJqIFl+QuO019u5iAvlKA/5Nm2XZc271yS7XzeVR5cAAOwTFwQAXUwCWogwYggIMH8AierHvr2XqxXmejOWu+sw8WYL19AqdEm+A=</latexit>

CELF
1. Compute and sort the marginal gain     of all 

nodes
2. Add the first node to the seed set
3. Compute the marginal gain from the top of 

the list
4. Re-sort every time you compute a node’s 

new marginal gain

�i

<latexit sha1_base64="TCIkBuYVixITCLH7ZRI8jnoGTgU=">AAACC3icdVDLSgMxFM34rPVVdekmWARXQ6aMtu6KblxWsA9oh5LJZNrQTGZIMmIZ+glu3OpfuBO3foQ/4TeYaatY0QOBc8+9l3Nz/IQzpRF6t5aWV1bX1gsbxc2t7Z3d0t5+S8WpJLRJYh7Ljo8V5UzQpmaa004iKY58Ttv+6DLvt2+pVCwWN3qcUC/CA8FCRrA2UqcXUK5xn/VLZWSjKjqt1SCyHeScnzmGuKauuNCx0RRlMEejX/roBTFJIyo04ViproMS7WVYakY4nRR7qaIJJiM8oF1DBY6o8rLpvRN4bJQAhrE0T2g4VX9uZDhSahz5ZjLCeqh+93Lxr1431WHNy5hIUk0FmRmFKYc6hvnnYcAkJZqPDcFEMnMrJEMsMdEmogWX5C4/TX27mIC+UoD/k1bFdlzbvXbL9Yt5VAVwCI7ACXBAFdTBFWiAJiCAgwfwCJ6se+vZerFeZ6NL1nznACzAevsEpaSb3w==</latexit>

a

b

c

d

Marginal gain

e

S1={a}

[Leskovec et al., KDD ‘07], [Leskovec, Stanford CS224W] 48



CELF – Lazy Hill Climbing

CELF
1. Compute and sort the marginal gain     of all 

nodes
2. Add the first node to the seed set
3. Compute the marginal gain from the top of 

the list
4. Re-sort every time you compute a node’s 

new marginal gain

�i

<latexit sha1_base64="TCIkBuYVixITCLH7ZRI8jnoGTgU=">AAACC3icdVDLSgMxFM34rPVVdekmWARXQ6aMtu6KblxWsA9oh5LJZNrQTGZIMmIZ+glu3OpfuBO3foQ/4TeYaatY0QOBc8+9l3Nz/IQzpRF6t5aWV1bX1gsbxc2t7Z3d0t5+S8WpJLRJYh7Ljo8V5UzQpmaa004iKY58Ttv+6DLvt2+pVCwWN3qcUC/CA8FCRrA2UqcXUK5xn/VLZWSjKjqt1SCyHeScnzmGuKauuNCx0RRlMEejX/roBTFJIyo04ViproMS7WVYakY4nRR7qaIJJiM8oF1DBY6o8rLpvRN4bJQAhrE0T2g4VX9uZDhSahz5ZjLCeqh+93Lxr1431WHNy5hIUk0FmRmFKYc6hvnnYcAkJZqPDcFEMnMrJEMsMdEmogWX5C4/TX27mIC+UoD/k1bFdlzbvXbL9Yt5VAVwCI7ACXBAFdTBFWiAJiCAgwfwCJ6se+vZerFeZ6NL1nznACzAevsEpaSb3w==</latexit>

a

d

b

c

e

Marginal gain

S1={a}

49[Leskovec et al., KDD ‘07], [Leskovec, Stanford CS224W]

• Idea: use marginal gain     as an upper-bound on      (j > i)�i

<latexit sha1_base64="TCIkBuYVixITCLH7ZRI8jnoGTgU=">AAACC3icdVDLSgMxFM34rPVVdekmWARXQ6aMtu6KblxWsA9oh5LJZNrQTGZIMmIZ+glu3OpfuBO3foQ/4TeYaatY0QOBc8+9l3Nz/IQzpRF6t5aWV1bX1gsbxc2t7Z3d0t5+S8WpJLRJYh7Ljo8V5UzQpmaa004iKY58Ttv+6DLvt2+pVCwWN3qcUC/CA8FCRrA2UqcXUK5xn/VLZWSjKjqt1SCyHeScnzmGuKauuNCx0RRlMEejX/roBTFJIyo04ViproMS7WVYakY4nRR7qaIJJiM8oF1DBY6o8rLpvRN4bJQAhrE0T2g4VX9uZDhSahz5ZjLCeqh+93Lxr1431WHNy5hIUk0FmRmFKYc6hvnnYcAkJZqPDcFEMnMrJEMsMdEmogWX5C4/TX27mIC+UoD/k1bFdlzbvXbL9Yt5VAVwCI7ACXBAFdTBFWiAJiCAgwfwCJ6se+vZerFeZ6NL1nznACzAevsEpaSb3w==</latexit>

� j

<latexit sha1_base64="OM69oVtzuhp4u9LvRJZOSrD1QmE=">AAACC3icdVDLSgMxFM3UV62vqks3wSK4GjJltHVXdOOygn1AO5RMJtPGZjJDkhFL6Se4cat/4U7c+hH+hN9gpq1iRQ8Ezj33Xs7N8RPOlEbo3cotLa+sruXXCxubW9s7xd29popTSWiDxDyWbR8rypmgDc00p+1EUhz5nLb84UXWb91SqVgsrvUooV6E+4KFjGBtpHY3oFzj3k2vWEI2qqCTahUi20HO2aljiGvqsgsdG01RAnPUe8WPbhCTNKJCE46V6jgo0d4YS80Ip5NCN1U0wWSI+7RjqMARVd54eu8EHhklgGEszRMaTtWfG2McKTWKfDMZYT1Qv3uZ+Fevk+qw6o2ZSFJNBZkZhSmHOobZ52HAJCWajwzBRDJzKyQDLDHRJqIFl+QuO019u5iAvlKA/5Nm2XZc271yS7XzeVR5cAAOwTFwQAXUwCWogwYggIMH8AierHvr2XqxXmejOWu+sw8WYL19AqdEm+A=</latexit>



CELF – Lazy Hill Climbing

CELF
1. Compute and sort the marginal gain     of all 

nodes
2. Add the first node to the seed set
3. Compute the marginal gain from the top of 

the list
4. Re-sort every time you compute a node’s 

new marginal gain

�i

<latexit sha1_base64="TCIkBuYVixITCLH7ZRI8jnoGTgU=">AAACC3icdVDLSgMxFM34rPVVdekmWARXQ6aMtu6KblxWsA9oh5LJZNrQTGZIMmIZ+glu3OpfuBO3foQ/4TeYaatY0QOBc8+9l3Nz/IQzpRF6t5aWV1bX1gsbxc2t7Z3d0t5+S8WpJLRJYh7Ljo8V5UzQpmaa004iKY58Ttv+6DLvt2+pVCwWN3qcUC/CA8FCRrA2UqcXUK5xn/VLZWSjKjqt1SCyHeScnzmGuKauuNCx0RRlMEejX/roBTFJIyo04ViproMS7WVYakY4nRR7qaIJJiM8oF1DBY6o8rLpvRN4bJQAhrE0T2g4VX9uZDhSahz5ZjLCeqh+93Lxr1431WHNy5hIUk0FmRmFKYc6hvnnYcAkJZqPDcFEMnMrJEMsMdEmogWX5C4/TX27mIC+UoD/k1bFdlzbvXbL9Yt5VAVwCI7ACXBAFdTBFWiAJiCAgwfwCJ6se+vZerFeZ6NL1nznACzAevsEpaSb3w==</latexit>

a

c

d

b

e

Marginal gain

S1={a}

S2={a,b}

50[Leskovec et al., KDD ‘07], [Leskovec, Stanford CS224W]

• Idea: use marginal gain     as an upper-bound on      (j > i)�i

<latexit sha1_base64="TCIkBuYVixITCLH7ZRI8jnoGTgU=">AAACC3icdVDLSgMxFM34rPVVdekmWARXQ6aMtu6KblxWsA9oh5LJZNrQTGZIMmIZ+glu3OpfuBO3foQ/4TeYaatY0QOBc8+9l3Nz/IQzpRF6t5aWV1bX1gsbxc2t7Z3d0t5+S8WpJLRJYh7Ljo8V5UzQpmaa004iKY58Ttv+6DLvt2+pVCwWN3qcUC/CA8FCRrA2UqcXUK5xn/VLZWSjKjqt1SCyHeScnzmGuKauuNCx0RRlMEejX/roBTFJIyo04ViproMS7WVYakY4nRR7qaIJJiM8oF1DBY6o8rLpvRN4bJQAhrE0T2g4VX9uZDhSahz5ZjLCeqh+93Lxr1431WHNy5hIUk0FmRmFKYc6hvnnYcAkJZqPDcFEMnMrJEMsMdEmogWX5C4/TX27mIC+UoD/k1bFdlzbvXbL9Yt5VAVwCI7ACXBAFdTBFWiAJiCAgwfwCJ6se+vZerFeZ6NL1nznACzAevsEpaSb3w==</latexit>

� j

<latexit sha1_base64="OM69oVtzuhp4u9LvRJZOSrD1QmE=">AAACC3icdVDLSgMxFM3UV62vqks3wSK4GjJltHVXdOOygn1AO5RMJtPGZjJDkhFL6Se4cat/4U7c+hH+hN9gpq1iRQ8Ezj33Xs7N8RPOlEbo3cotLa+sruXXCxubW9s7xd29popTSWiDxDyWbR8rypmgDc00p+1EUhz5nLb84UXWb91SqVgsrvUooV6E+4KFjGBtpHY3oFzj3k2vWEI2qqCTahUi20HO2aljiGvqsgsdG01RAnPUe8WPbhCTNKJCE46V6jgo0d4YS80Ip5NCN1U0wWSI+7RjqMARVd54eu8EHhklgGEszRMaTtWfG2McKTWKfDMZYT1Qv3uZ+Fevk+qw6o2ZSFJNBZkZhSmHOobZ52HAJCWajwzBRDJzKyQDLDHRJqIFl+QuO019u5iAvlKA/5Nm2XZc271yS7XzeVR5cAAOwTFwQAXUwCWogwYggIMH8AierHvr2XqxXmejOWu+sw8WYL19AqdEm+A=</latexit>



• Theoretical quarantess
• In the worst case, it 

performs as the Greedy
• In practice, 700x faster

than the Greedy algorithm

Key Points for CELF
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Figure 6: (a) Improvement in performance by split-
ting big blogs into multiple nodes. (b) Run times of
exhaustive search, greedy and CELF algorithm.

just want to select the most popular blogs and hope to de-
tect many cascades. We considered several such heuristics,
where we order blogs by some “goodness” criteria, and then
pick top blogs (until the budget is exhausted). We consider
the following criteria: the number posts on the blog, the
cumulative number of out-links of blog’s posts, the number
of in-links the blog received from other blogs in the dataset,
and the number of out-links to other blogs in the dataset.

As Fig. 5(a) shows, the CELF algorithm greatly outper-
forms all the heuristic selection techniques. More interest-
ingly, the best heuristics (doing 45% worse than CELF) pick
blogs by the number of in- or out-links from/to other blogs
in the dataset. Number of posts, the total number of out-
links and random blog selection do not perform well.

Number of in-links is the indicator of a blog’s tendency to
create cascades, while number of out-links (to other blogs)
indicates blog’s tendency to summarize the blogosphere. We
also note, that the surprisingly good performance of the
number of out-links to blogs in the dataset is an artefact
of our “closed-world” dataset, and in real-life we can not
estimate this. The results also agree well with our intuition
that the number of in-links is a good heuristic, since it di-
rectly indicates the of propagation of information.

Fig. 5(b) explores the same setting under the NP cost
model. Here, given a budget of B posts, we select a set of
blogs to optimize PA objective. For the heuristics, we select
a set of blogs to optimize chosen heuristic, e.g., the total
number of in-links of selected blogs while still fitting inside
the budget of B posts. Again, CELF outperforms the next
best heuristics by 41%, and again the number of in- and
out-links are the best heuristics.

These results show that simple heuristics that one could
use to identify blogs to read do not really work well. There
are good summarizer blogs that may not be very popular,
but which, by using few posts, catch most of the important
stories propagating over the blogosphere.

5.6 Fractionally selecting blogs
Our framework also allows fractional selection of blogs,

which means that instead of reading a large blog every day,
we can read it, e.g., only one day per week. This also allows
us to ask: what is the best day of the week to read blogs?

In order to study whether fractional selection allows to
achieve better benefit cost ratio, we split the blogs which
had at least one post per day into 7 blogs, one for each day
of the week. Fig. 6(a) shows, that by splitting big blogs,
the population affected (PA) objective function increases for
12% over the setting where only whole blogs can be selected.

Returning to the original question, we performed the fol-
lowing experiment: given a budget of 1000 posts, what is
the best day of the week to read posts (optimizing PA)? We
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Figure 7: Generalization to future data when CELF
can select any blog (a), or only big blogs (b).

found that Friday is the best day to read blogs. The value of
PA for Friday is 0.20, while it is 0.13 for the rest of the week.
We consider this surprising, since the activity of the blogo-
sphere (number of posts and links created) drops towards
the end of the week, and especially over the weekend [16].

5.7 Generalization to future data
Since the influence and popularity of the blogs also evolves

over time we also want to know how well the selected blogs
will detect cascades in the future. To evaluate the general-
ization to unknown future, we use the first 6 months of the
dataset as historic data to select a set of blogs, and then use
second 6 months of the dataset to evaluate the performance
of selected blogs on unseen future cascades.

Fig. 7 compares the performance on the unknown future
data. Top dashed curve in both plots shows the optimal per-
formance on future data, i.e., we select the blogs directly us-
ing the (unknown) future data. The bottom curve presents
the realistic case where we select the blogs using historic
data and evaluate using hidden future data.

As Fig. 7(a) shows, CELF overfits when evaluated on the
future data, i.e., it selects small blogs with very few posts
that just by chance participate in cascades, and then these
blogs do not generalize well for the second half of the year.
One way to overcome this overfitting is to prevent CELF from
picking very small blogs. To understand this restriction we
show in Fig. 7(b) the performance when CELF can only select
blogs with at least one post per day (365 posts per year).

Comparing Fig. 7(a) and Fig. 7(b) we see that the opti-
mal performance (top curve) drops if CELF is limited on only
picking big blogs. This is expected since CELF has less choice
of which blogs to pick, and thus performs worse. However,
when limiting the selection to only big blogs (Fig. 7(b)) the
gap between the curves is very small (compared to the big
gap of Fig. 7(a)). Moreover, the performance on the future
data does not drop, and the method generalizes well.

5.8 Scalability
Figure 4(b) plots the running time of selecting k blogs. We

see that exhaustively enumerating all possible subsets of k
elements is infeasible (the line jumps out of the plot for k =
3). The simple greedy algorithm scales as Ω(k|V|), since for
every increment of k we need to consider selecting all remain-
ing |V| − k blogs. The bottom line overlapping the x-axis
of Fig. 4(b) shows the performance of our CELF algorithm.
For example, for selecting 100 blogs, greedy algorithm runs
4.5h, while CELF takes 23 seconds (700 times faster). Calcu-
lation of the on-line bounds while running CELF takes 54s.

Exploiting the sparsity of the problem (c.f., Section 4) al-
lowed us to reduce the size of the inverted index from orig-
inally 3.5 GB to 50 MB, easily fitting it in main memory.

[Leskovec et al., KDD ‘07] 51



Scalable Algorithms –
Reverse Influence Sampling



• Algorithms that ensure - approximation of the 

expected influence spread

• Scalability (near-linear time) is achieved relying on the 
concept of Reverse Reachable Sets (RR set)

Reverse Influence Sampling
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• An RR set is a random sample of G
• Generation of RR sets by computing reachable nodes under the IC model

Reverse Reachable Sets (RR Sets)
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[Borgs et al., SODA ‘14], [Aslay et al., Tutorial at WSDM ‘18] 54



• An RR set is a random sample of G
• Generation of RR sets by computing reachable nodes under the IC model

Reverse Reachable Sets (RR Sets)
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• An RR set is a random sample of G
• Generation of RR sets by computing reachable nodes under the IC model

Reverse Reachable Sets (RR Sets)
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• An RR set is a random sample of G
• Generation of RR sets by computing reachable nodes under the IC model

Reverse Reachable Sets (RR Sets)
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• An RR set is a random sample of G
• Generation of RR sets by computing reachable nodes under the IC model

Reverse Reachable Sets (RR Sets)
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The RR set is a sample set of nodes that can influence node A
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• Suppose that we randomly generate a lot of RR sets

• Node C appears very frequently
– C has a large influence

Influence Estimation with RR Sets (1/2)
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Influence Estimation with RR Sets (2/2)

Pr(node v appears in a random RR set)

<latexit sha1_base64="GDdhhkyspXti7CHfMChuHnMeg00="></latexit>
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R1 = {A, C, B}
R2 = {B, A, E}
R3 = {C}
R4 = {D, C}
R5 = {E}

[Borgs et al., SODA ‘14], [Aslay et al., Tutorial at WSDM ‘18]

• Example
– Node C appears in 𝟑

𝟓
RR sets

– C’s expected influence is roughly 𝟑
𝟓

n 
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Influence Estimation with RR Sets (2/2)

R1 = {A, C, B}
R2 = {B, A, E}
R3 = {C}
R4 = {D, C}
R5 = {E}

=
1
n
· (S’s expected influence)
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Pr(node set S overlaps a random RR set)
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[Borgs et al., SODA ‘14], [Aslay et al., Tutorial at WSDM ‘18]

Computational benefit of RR sets
• The simulations to estimate influence are not repeated for each candidate seed
• Use the same RR sets to estimate the influence of all nodes

• Example
– {A, E} overlaps 𝟑

𝟓
RR sets

– {A, E}’s expected influence is roughly 𝟑
𝟓

n 
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1. Generate a number of RR sets
– A seed set’s influence spread is analogous to the number of RR sets it covers
– Prob of a node being influenced by a seed = Prob of the seed existing in its RR set

2. Apply the Greedy algorithm to find a k-set that overlaps the most number of 
RR-sets
– Maximum cover problem

Reverse Influence Sampling – The Algorithm

[Borgs et al., SODA ‘14], [Aslay et al., Tutorial at WSDM ‘18]

• How many RR sets to sample?
• Count the total cost of RR set construction
• Stop when the cost > a threshold
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• Example graph: Cost = 7
• Cost = 1 for adding A
• Cost = 2 for adding C
• Cost = 2 for adding E and B
• Cost = 2 for cheching the last two edges (D, E), (A, B)
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• Advantage of the [Borgs et al., SODA ‘14] algorithm
– The first near-linear time algorithm

– - approximation

– Time complexity: 
• Drawbacks

– Cost-driven selection of the # of RR sets

• Other ideas based on RR sets
– TIM

• Influence Maximization: Near-Optimal Time Complexity Meets Practical 
Efficiency, Tang et al., SIGMOD ’14

– IMM
• Influence Maximization in Near-Linear Time: A Martingale Approach, 

Tang at al., SIGMOD ‘15

Summary of Reverse Influence Sampling
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Scalable Algorithms –
Sketch-based IM (SKIM)



• Overview of the idea
1. Take different realizations, producing a number of possible words

2. Idenify set S of k nodes with the largest influence in these instances
• σ(S): the average number of nodes reached by S in the instances

Sketch-based Influence Maximization

[Cohen et al., CIKM ‘14], [Aslay et al., Tutorial at WSDM ‘18]
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Evaluating influence in a possible world takes O(m) time
Use sketches (signatures) to reduce the estimation time
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Overview of the idea:

• Take a possible world Gi and assign 
a random number in [0, 1] to each 
node

Reachability Sketches (1/2)
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• Compute the rank of each node v
– The minimum number among the 

nodes that v can reach

• If v can reach many nodes, then its rank is 
likely to be small

• Use the rank of v to estimate the influence 
of v in Gi

[Cohen et al., CIKM ‘14], [Aslay et al., Tutorial at WSDM ‘18] 66



• Keep multiple ranks to have a better 
estimate of  the influence
– E.g., the smallest c values among the 

nodes that v can reach

Reachability Sketches (2/2)
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• Keep the smallest c values among the 
nodes that v can reach in all possible 
worlds extracted

[Cohen et al., CIKM ‘14], [Aslay et al., Tutorial at WSDM ‘18]

Idea
• Use the Greedy algorithm
• Substitute the influence spread estimation 

using the ranks of the candidate seed set

Problem: influence estimation based on one rank 
would be inaccurate
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1. Generate a number of possible words
2. Construct reachability sketches for all 

nodes
– Each node will obtain c ranks

3. Use the Greedy algorithm
– To evaluate the influence of a seed set S, 

check the ranks to derive the estimation
– Smaller rank ≈ higher influence, for node v

Sketch-based IM (SKIM)
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Theoretical guarantees
• Expected running time: near-linear to the total number of 

possible worlds

• When c is large enough,                  - approximation w.r.t. the 
number of possible worlds 
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• GRE: Greedy
• IRIE: scalable heuristic
• DEG: degree-based
• SK: Sketch-based IM

Experimental Evaluation
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Figure 2. Evaluating influence and running time for several
algorithms. The legend applies to all plots.
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Figure 3. Evaluating SKIM and IRIE on the uniform (un) and
weighted cascade (wc) models. The legend applies to both plots.

6.2 Influence Oracles

This section evaluates our influence oracle (cf. Section 5). We use
the IC model (with wc probabilities) to generate a set of ¸ = 64
instances. We build combined reachability sketches of size k = 64
for this set of instances and evaluate the performance of our
oracle (cf. Section 2).

Table 3 summarizes the performance of our oracle on several
networks. It reports the time spent for preprocessing and the
required space (in MiB) to store the combined sketches. Queries
are evaluated for seed set sizes s of 1, 50, and 1000. For each s,
we generate 100 seed sets whose nodes are selected uniformly at
random. We report the average running time of the query (esti-
mator) in microseconds and the relative error of the estimated
influence when compared to the exact influence of the respective
seed set.

We observe that preprocessing times are reasonable for all
graphs while space consumption is essentially linear in the number
of nodes. For example, on LiveJournal (the biggest instance
tested), the sketches require 2.3 GiB of space, which we computed
in just 34 minutes. The influence of a single node can then be
estimated in 1–2 µs, while for 1000 seed nodes we require 5.2 ms.
Note that the query time is almost independent of the graph size.
Using k = 64, the error stays well below 10% for one seed node,
and decreases significantly for larger seed sets (to around 1%
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Figure 4. Evaluating influence permutations (top) and running
time (bottom) on several instances. The legend applies to both
plots.

Table 3. Evaluating our influence oracle with ¸ = 64.
preproc. queries

1 seed 50 seeds 1000 seeds
time space time err. time err. time err.

instance [sec] [MiB] [µs] [%] [µs] [%] [µs] [%]
AstroPh 4 7.2 1.6 8.5 166.7 2.1 4 658.3 0.5
Epinions 10 37.1 1.3 5.2 155.0 3.4 5 011.1 1.1
Slashdot 20 37.8 1.5 6.0 155.2 3.9 4 982.3 1.0
Gowalla 46 96.0 1.5 7.3 179.8 3.2 5 275.6 1.1
TwitterFollowers 229 223.0 2.1 7.0 190.2 3.3 5 061.8 0.8
LiveJournal 2 064 2 367.0 2.0 7.1 189.6 3.0 5 168.3 0.9

for s = 1000).
Figure 5 shows in detail how the error of the estimator (y

axis) decreases when the seed set size increases (x axis). To
better evaluate the performance of estimating the union of several
reachability sets, we use the following neighborhood generator for
queries: For each query, it first picks a node u at random with
probability proportional to its degree. From u it exhaustively
grows a BFS of the smallest depth l such that the tree contains
at least s nodes. The nodes for the seed set are then uniformly
sampled from this tree. With this generator, we expect the
reachability sets of seed nodes to highly overlap. Looking at
the figure, we observe that the estimation error of our oracle
decreases rapidly for increasing s. Also, running queries from
the neighborhood generator (right) compared to the uniform
one (left), has almost no e�ect on the estimation error; for 50
seed nodes it is even better on many instances.
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Figure 5. Evaluating our oracle for seed sets of varying size,
which are selected uniformly at random (left) or with our BFS-
based method (right).
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Scalable Heuristics – MIA, LDAG, SimPath



Expected spread of influence achieved

Running time 
of the algorithm

Simple Greedy Algorithm
[Kempe et al., KDD ‘04]

LDAG Algorithm
[Chen et al., ICDM ‘10]

Simpath
[Goyal et al. ICDM ’11]

NP-hard

1-1/e- ε
approximation

No approximation
guarantees

Inefficient

Fast

• The majority of influence flows within
small neighborhoods

• Extract DAGs per node
• Compute the spread on these DAGs

Faster

• Explore simple paths in the 
neighborhood of each node 

• Memory usage is low
• Spread achieved is better

Ideal 
Algorithm

Scalable Heuristics for IM

[Goyal et al. ICDM ‘11] 71



• The Greedy algorithm
– Approximation guarantees
– Running time is high

• Main research focus on scalabilility
– With or without guarantees

• Mainly rely on the structure of the graph
– Real diffusion cascades (e.g., retweets) are not taken into 

account
– Next part of the tutorial

Part II Summary
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Part I. Introduction

Part II. Traditional influence maximization

Part III. Influence and diffusion learning

Part IV. Learning influence maximization

Part V. Online influence maximization

Part VI. Summary and open challenges

Outline of the Tutorial
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Part III. Influence and diffusion 
learning

• Learning influence
• Predicting diffusion

• Recurrent Neural Networks
• Point-processes

• Learning influence for IM



• Network inference:
– Social networks have an underlying 

network, but the web of media doesn’t.
– Use the cascades to infer

the actual edges between 
nodes in the web. 

• Over a social network, learn how users influence each other to:
– Predict the diffusion accurately
– Use it for influence maximization

Learn from Diffusion Cascades

[Gomez Rodriguez et al., Tutorial at KDD ‘15] 75



• Network inference:
– Social networks have an underlying 

network, but the web of media doesn’t.
– Use the cascades to infer

the actual edges between 
nodes in the web. 

• Over a social network, learn how users influence each other to:
– Predict the diffusion accurately
– Use it for influence maximization

Learn from Diffusion Cascades
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Diffusion Cascades Example

77

• Individuals posted music 
from an artist whose name 
matched the letter they were 
assigned by a friend

• Each node starts a new line 
when their friends adopt the 
cascade

• Each friend increases radius 
by starting their own cascade

• Edges are colored from red
(early) to blue (late)

The diffusion tree of a cascade.
[ Cheng et al. ICWSM ‘18]



• Using a log of activities (diffusion cascades) and the structure of 
the network

• When 𝑣 retweets in a cascade at time 𝑡
– Increase 𝑎#,%, where 𝑢 are all the previous nodes that 𝑣 follows at t
– Augment 𝐷𝑡#,% with the time passed between 𝑢’s and 𝑣’s occurrence 

𝑝#,%& =
𝑎#,%
𝑎#

𝑒
' &'&!
(&!,#

𝑢 𝑣

[Goyal et al. WSDM ‘10]

𝑎!,# +1

𝑑𝑡

𝐷𝑡!,# 𝑢

𝑣

Diffusion	Cascade
Follower	Network

Estimate Influence Weights
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• The exponential decay of influence is an empirically observed
phenomenon

• Under IC, the probability of v getting influenced in a diffusion
cascade at time 𝑡 is the opposite of the probability of surviving
from all of its neighbors:

𝑝!" = 1 − (
#∈%(!)

(1 − 𝑝#,!" )

• For prediction, use the above to define if a node will be 
influenced based on a diffusion 𝐶 and measure the

• For Influence Maximization, use probabilities as weights and 
run SimPath

Estimate Influence Weights

79[Goyal et al. WSDM ‘10]



• Influence probability is a function of the transmission delay

𝑃 𝑡!|𝑡"; 𝑎",! ≔ 𝑎",! 𝑒$%;,=('=$';)

• Infer the transmission rate  𝑎",!, which may reveal an  edge
• The survival function is the probability that 𝑣 is not activated 

by node 𝑢.

𝑆 𝑡!|𝑡"; 𝑎",! ≔ 1 − 𝑃 𝑡!|𝑡"; 𝑎",!

[Gomez Rodriguez et al., ICML ‘11]

Learning Continuous Time Influence 

𝑡! 𝑡#

[Gomez Rodriguez and Song, Tutorial at KDD ‘15] 80



• Likelihood of activations and non-activations of a cascade C by time T

P(C|A) = 0
%∈*,
&#+,

[ 0
&$-,

𝑆 𝑇|𝑡%; 𝑎%,. ∗ (0
&!/&#

𝑃 𝑡%|𝑡# ; 𝑎#,% 0
01#,
&%/&#

𝑆 (𝑡%|𝑡0 ; 𝑎0,%))]

• Convex log-likelihood 
• Inferred network needs to be in a very small scale (thousands of nodes)
• The inference accuracy increases as the number of cascades 

increases
• Run PMIA, an IC-based heuristic for IM

Staying uninfected by 
other nodesGetting infected by 𝑢Not having infected m by 

time T

Learning Continuous Time Influence 

81[Gomez Rodriguez et al., ICML ‘11][Gomez Rodriguez and Song, Tutorial at KDD ‘15]



• Need to learn less parameters to battle overfitting

• Define the influence probability based on a pair of influence & 
susceptibility

𝑝#,% = 𝑓(𝑆#, 𝑇% ) =
2

234('!
()*#

()∑,-.
$/. '!

, /*#
, 0

)

• Instead of |E| parameters, learn |N|�̅� embeddings in 𝑅5

𝐿 𝑃, 𝐷 = ∑6∈((∑%∈6 log 𝑃%6 + ∑%7∈ 86 log(1 − 𝑃%7
6))

• Optimize using EM
• Evaluate on predicting the diffusion of real cascade.

[Bourigault et al., WSDM ‘16]

u v
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.

S T
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.

.

Embedded Independent Cascade
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• Derive embedding's of influence using diffusion networks
• Use both, the network and the diffusion cascades
• For each node in a diffusion network, derive a context (similar to

word2vec) based on RWR and random sampling

Influence 2 vector

[Feng et al., ICDE ‘18]

a b

c

d e

Follower Network

d

Diffusion Cascade

e b c a

a b

c

d e

Diffusion Network
5 RWR

d e,a,e… b,c,e…

…

c a,a.. d,a,e..

45 Random

83



• Use the node-context pairs to train a shallow NN
• Predict the course of the cascade using these representations

Influence 2 vector

Source embedding 
look up of node d

0

0

0

1

0
𝑆!

The output layer is the 
target  embeddings T

𝑧!" = 𝑆!𝑇" + 𝑏! + b̈#

Hidden Layer S

𝑃 𝑒 𝑑 = log 𝜎(𝑧!" ) + 8
$∈&"'

log(𝜎 −𝑧!$ )

Negative sampling with 10 
random nodes (Neg)

d e,a,e… b,c,e…

Output before activation

84[Feng et al., ICDE ‘18]



Influence 2 vector

Results in predicting the diffusion

85[Feng et al., ICDE ‘18]



Influence 2 vector

Learned representations of pairs of nodes that appear frequently together in the 
cascades of the Digg dataset

86[Feng et al., ICDE ‘18]



Neural Networks for Diffusions

• Extensive work on predicting diffusion with temporal 
neural networks:
– TopoLSTM [Jia et al. ICDM 2017]
– Cyan RNN [Wang et al. CIKM 2018]
– DeepDiffuse [Islam et al. ICDM 2018]
– FOREST  [Yang et al. IJCAI 2019]

• The representation from these models can not be adapted 
for other tasks, such as influence maximization, in a 
straightforward manner

87



• Model the cascades as a set of interacting Poisson processes 

• 𝑆9 is a set of marked events
• Probability of an event happening at node 𝑘 depends on its background 

rate 𝜆0 and its interaction with other nodes ℎ
• 𝑝 𝑠9, 𝑐9, 𝑧9 𝜆, ℎ =

∏0:2𝑝 𝑐9 = 𝑘, 𝑧9 = 0 𝜆0 ∗ ∏97:2∏%:2𝑝(𝑐92 = 𝑣 , 𝑧9 = 𝑛7|ℎ%,0 ΔΤ92,9 )

• Learn ℎ;,0 Δ𝑡 = 𝑊%,0𝑔<#,,%(Δ𝑡) using Stochastic Variational Inference

[Linderman et al., ICML ‘14]

𝑠$ caused by background rate of node 𝑘 𝑠$ was caused by spike at time 𝑛’, 
which belonged to node 𝑣

88

Hawkes Process for Diffusions



• Use RNN to predict which node will get influenced next and when,
during a diffusion cascade

• The next node 𝑦=32 and its time 𝑡=32, depends non-linearly on the history
ℎ= (previously infected nodes and their times)

• Embed the history into a latent vector (hidden state of an RNN) and use it
for prediction

[Du et al., KDD ‘16]
89

Recurrent Marked Temporal Point Process

ture between successive inter-event durations. These di↵er-
ent parameterizations encode our prior knowledge about the
latent dynamics we try to model. In practice, however, the
true model is never known. Thus, we have to try di↵erent
specifications for �⇤(t) to tune the predictive performance
and most often we can expect to su↵er from certain errors
caused by the model misspecification.

Marker Generation. Furthermore, it is quite often that
we have additional information (or covariates) associated
with each event like the markers. For instance, the marker
of a NYC taxi can be the neighborhood-name of the place
where it picks up (or drops o↵) passengers; the marker of
each financial transaction can be the action of buying (or
selling); and the marker of a clinical event can be the diag-
nosis of the major disease. Classic temporal point processes
can be extended to capture the marker information mainly
in the following two ways: first, the marker is directly incor-
porated into the intensity function; second, each marker can
be regarded as an independent dimension to have a multi-
dimensional temporal point process. In terms of the for-
mer approach, we still need to specify a proper form for the
conditional intensity function. Moreover, due to the extra
complexity of the function induced by the markers, people
normally make strong assumptions that the marker is inde-
pendent on the history [33], which greatly reduces the flex-
ibility of the model. With respect to the latter method, it
is very often to have large number of markers, which results
in a sparsity problem associated with each dimension where
only very few events can happen.

5. RECURRENT MARKED TEMPORAL

POINT PROCESS

Each parametric form of the conditional intensity function
determines the temporal characteristics of a family of point
processes. However, it will be hard to correctly decide which
form to use without any su�cient prior knowledge in order
to take into account both the marker and the timing infor-
mation. To tackle this challenge, in this section, we propose
a unified model capable of modeling a general nonlinear de-
pendency over the history of both the event timing and the
marker information.

5.1 Model Formulation

By carefully investigating the various forms of the condi-
tional intensity function (5), (6), and (7), we can observe
that they are inherently di↵erent representations and real-
izations of various kinds of dependency structures over the
past events. Inspired by this critical insight, we seek to
learn a general representation to approximate the unknown
dependency structure over the history.

Recurrent Neural Network (RNN) is a feedforward neural
network structure where additional edges, referred to as the
recurrent edges, are added such that the outputs from the
hidden units at the current time step are fed into them again
as the future inputs at the next time step. In consequence,
the same feedforward neural network structure is replicated
at each time step, and the recurrent edges connect the hid-
den units of the network replicates at adjacent time steps
together along time, that is, the hidden units with recur-
rent edges not only receive the input from the current data
sample but also from the hidden units in the last time step.
This feedback mechanism creates an internal state of the

time

dj+1 = tj+1 � tj

(tj+1, yj+1)

hidden hj+1

f�(tj+1) = f(dj+1|hj)(tj , yj)

hidden hjhj�1

� log f�(tj+1)� log P (yj+1|hj) � log P (yj+2|hj+1) � log f�(tj+2)

Figure 2: Illustration of Recurrent Marked Temporal Point
Process. For each event with the timing tj and the marker
yj , we treat the pair (tj , yj) as the input to a recurrent neural
network where the embedding hj up to the time tj learns a
general representation of a nonlinear dependency over both
the timing and the marker information from past events.
Note that the solid diamond and the circle on the timeline
indicate two events of di↵erent types yj 6= yj+1.

network to memorize the influence of each past data sam-
ple. In theory, finite-sized recurrent neural networks with
sigmoidal activation units can simulate a universal Turing
machine [36], which is able to perform an extremely rich
family of computations. In practice, RNN has been shown
to be a powerful tool for general purpose sequence model-
ing. For instance, in Natural Language Processing, recurrent
neural network has state-of-the-arts predictive performance
for sequence-to-sequence translations [24], image caption-
ing [38], handwriting recognition [18]. It has also been used
for discrete-time series data prediction [30, 39, 34](treat time
as discrete indices) for a long time.
Our key idea is to let the RNN (or its modern variant

LSTM [23], GRU [5], etc.) model the nonlinear dependency
over both of the markers and the timings from past events.
As shown in Figure 2, for the event occurring at the time
tj of type yj , the pair (tj , yj) is fed as the input into a re-
current neural network unfolded up to the j + 1-th event.
The embedding hj�1 represents the memory of the influence
from the timings and the markers of past events. The neu-
ral network updates hj�1 to hj by taking into account the
e↵ect of the current event (tj , yj). Since now hj represents
the influence of the history up to the j-th event, the con-
ditional density for the next event timing can be naturally
represented as

f⇤(tj+1) = f(tj+1|Ht) = f(tj+1|hj) = f(dj+1|hj), (8)

where dj+1 = tj+1 � tj . As a consequence, we can depend
on hj to make predictions to the timing t̂j+1 and the type
ŷj+1 of the next event.
The advantage of this formulation is that we explicitly

embed the event history into a latent vector space, and by
the elegant relation (4), we are now able to capture a general
form of the conditional intensity function �⇤(t) without the
need of specifying a fixed parametric specification for the
dependency structure over the history. Figure 3 presents
the overall architect of the proposed RMTPP. Given a se-
quence of events S =

�
(tj , yj)

n
j=1

�
, we design an RNN which

computes a sequence of hidden units {hj} by iterating the
following components.
Input Layer. At the j-th event, the input layer first

projects the sparse one-hot vector representation of the marker
yj into a latent space. We add an embedding layer with the
weight matrix Wem to achieve a more compact and e�cient
representation yj = W>

emyj + bem, where bem is the bias.
We learn Wem and bem while we train the network. In
addition, for the timing input tj , we can extract the associ-



• To predict next node use a standard softmax output
• To predict next time use a point process with rate

𝜆∗ 𝑡 = exp 𝑢'ℎ; +𝑤' 𝑡 − 𝑡; + 𝑏'

90[Du et al., KDD ‘16]

Timing tj Marker yj

� log f�(tj+1)

hidden hj

� log P (yj+1|hj)

W t embedding yj

Wem

W y

W h

V y

Recurrent Layer

Input Layer

Output Layer
vt

Figure 3: Architect of RMTPP. For a given sequence S =�
(tj , yj)

n
j=1

�
, at the j-th event, the marker yj is first em-

bedded into a latent space. Then, the embedded vector and
the temporal features are fed into the recurrent layer. The
recurrent layer learns a representation that summaries the
nonlinear dependency over the previous events. Based on
the learned representation hj , it outputs the prediction for
the next marker ŷj+1 and timing t̂j+1 to calculate the re-
spective loss functions.

ated temporal features tj (e.g., like the inter-event duration
dj = tj � tj�1).

Hidden Layer. We update the hidden vector after re-
ceiving the current input and the memory hj�1 from the
past. In RNN, we have

hj = max
n
W yyj +W ttj +W hhj�1 + bh, 0

o
. (9)

Marker Generation. Given the learned representation
hj , we model the marker generation with a multinomial dis-
tribution by

P (yj+1 = k|hj) =
exp

⇣
V y

k,:hj + byk

⌘

PK
k=1 exp

⇣
V y

k,:hj + byk

⌘ , (10)

where K is the number of markers, and V y
k,: is the k-th row

of matrix V y.
Conditional Intensity. Based on hj , we can now for-

mulate the conditional intensity function by

�⇤(t) = exp

✓
vt>

· hj| {z }
past

influence

+ wt(t� tj)| {z }
current
influence

+ bt|{z}
base

intensity

◆
, (11)

where vt is a column vector, and wt, bt are scalars. More
specifically,

• The first term vt>
· hj represents the accumulative in-

fluence from the marker and the timing information of
the past events. Compared to the fixed parametric for-
mulations of (5), (6), and (7) for the past influence, we
now have a highly non-linear general specification of the
dependency over the history.

• The second term emphasizes the influence of the current
event j.

• The last term gives a base intensity level for the occur-
rence of the next event.

• The exponential function outside acts as a non-linear trans-
formation and guarantees that the intensity is positive.

By invoking the elegant relation between the conditional
intensity function and the conditional density function in (4),
we can derive the likelihood that the next event will occur

at the time t given the history by the following equation:

f⇤(t) = �⇤(t) exp

 
�

Z t

tj

�⇤(⌧)d⌧

!

= exp

(
vt>

· hj + wt(t� tj) + bt +
1
w

exp(vt>
· hj + bt)

�
1
w

exp(vt>
· hj + wt(t� tj) + bt)

)
. (12)

Then, we can estimate the timing for the next event using
the expectation

t̂j+1 =

Z 1

tj

t · f⇤(t)dt. (13)

In general, the integration in (13) does not have analytic
solutions, so we can apply commonly used numerical in-
tegration techniques [32] for one-dimensional functions to
compute (13) instead.
Remark. Based on the hidden unit of RNN, we are able

to learn a unified representation of the dependency over the
history. In consequence, the direct formulation (11) of the
conditional intensity function �⇤(tj+1) captures both of the
information from past event timings and event markers. On
the other hand, since the prediction for the marker also
depends nonlinearly on the past timing information, this
may improve the performance of the classification task as
well when both of these two information are correlated with
each other. In fact, experiments on synthetic and real world
datasets in the following experimental section do verify such
mutual boosting phenomenon.

5.2 Parameter Learning

Given a collection of sequences C =
�
S

i
 
, where S

i =�
(tij , y

i
j)

ni
j=1

�
, we can learn the model by maximizing the joint

log-likelihood of observing C.

`({Si
}) =

X

i

X

j

⇣
logP (yi

j+1|hj) + log f(dij+1|hj)
⌘
, (14)

We exploit the Back Propagation Through Time (BPTT) for
training RMTPP. Given the size of BPTT as b, we unroll
our model in Figure 3 by b steps. In each training iteration,
we take b consecutive samples {(tik, y

i
k)

j+b
k=j} from a single

sequence, apply the feed-forward operation through the net-
work, and update the parameters with respect to the loss
function. After we unroll the model for b steps through time,
all the parameters are shared across these copies, and will be
updated sequentially in the back propagation stage. In our
algorithm framework1, we need both sparse (the marker yj)
and dense features at time tj . Meanwhile, the output is also
mixed of discrete markers and real-value time, which is then
fed into di↵erent loss functions including the cross-entropy of
the next predicted marker and the negative log-likelihood of
the next predicted event timing. Therefore, we build an e�-
cient and flexible platform2 particularly optimized for train-
ing general directed acyclic structured computational graph
(DAG). The backend is supported via CUDA and MKL for
GPU and CPU platform, respectively. In the end, we ap-
ply stochastic gradient descent (SGD) with mini-batch and
several other techniques of training neural networks [37].

1https://github.com/dunan/NeuralPointProcess
2https://github.com/Hanjun-Dai/graphnn

Recurrent Marked Temporal Point Process
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[Du et al., KDD ‘16]
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Figure 7: Performance evaluation for predicting both marker and timing of the next event. The top row presents the
classification error of predicting th event markers, and the bottom row gives the RMSE of predicting the event timings.

(a) Time Prediction Error (b) Marker Prediction Error
Figure 6: Predictive performance comparison with RNN
which is trained for predicting the next timing only in (a),
and for predicting the next marker only in (b).

also includes the marker information. Figure 5 compares the
error rates of di↵erent processes in predicting both event
timings and markers. Compared to the other baselines,
RMTPP is again consistent with the optimal estimator with-
out any prior knowledge about the true underlying genera-
tive process.

Finally, since the occurrences of future events depend on
both of the past marker and timing information, we would
like to investigate whether learning a unified representation
of the joint information can further improve future predic-
tions. Therefore, we train an RNN by only using the tempo-
ral and the marker information, respectively. Figure 6 gives
the comparisons between RMTPP and RNN where in panel
(a), RNN has the 4.3522 RMSE while RMTPP achieves a
2.7395 RMSE, and in panel (b), RNN reports 39.59% clas-
sification error while RMTPP reaches to the 27.16% level.
Clearly, they verify that the joint modeling of both informa-
tion can boost the performance of predicting future events.

6.3 Real Data

We evaluate the predictive performance of RMTPP on
real world datasets from a diverse range of domains.

New York City Taxi Dataset. The NYC taxi dataset4

4http://www.andresmh.com/nyctaxitrips/

contains ⇠173 million trip records of individual Taxi for
consecutive 12 months in 2013. The location information
is available in the form of latitude/longitude coordinates.
Each record also contains the temporal information of pick-
up (drop-o↵) passengers associated with every trip. We
have used NYC Neighborhood Names GIS dataset5 to map
the coordinates to neighborhood names. For those coordi-
nates of which the location name is not directly available
in the GIS dataset, we use geodesic distance to map them
to the nearest neighborhood name. With this process we
obtained 299 unique locations as our markers. An event is
a pickup record for a taxi. Further, we have divided each
single sequence of a taxi into multiple fine-grained subse-
quences where two consecutive events are within 12 hours.
We obtained 670,753 sequences in total out of which 536,603
were used for training and 134,150 were used for testing. We
predict the location and the time of the next pickup event.
Financial Transaction Dataset. We have collected

a raw limited order book data from NYSE of the high-
frequency transactions for a stock in one day. It contains
0.7 million transaction records, each of which records the
time (in millisecond) and the possible action (B = buy, S
= sell). We treat the type of actions as markers. The in-
put data is a single long sequence with 624,149 events for
training and 69,350 events for testing. The task is to predict
which action will be taken next at what time.
Electrical Medical Records. MIMIC II medical dataset

is a collection of de-identified clinical visit records of Inten-
sive Care Unit patients for seven years. We have filtered out
650 patients and 204 diseases. Each event records the time
when a patient had a visit to the hospital. We have used
the sequences of 585 patients to train, and the rest for test.
The goal is to predict which major disease will happen to a
given patient at what time in the future.
Stack OverFlow Dataset. Stack Overflow6 is a question-

5https://data.cityofnewyork.us/City-Government/
Neighborhood-Names-GIS/99bc-9p23
6https://archive.org/details/stackexchange



• Use the diffusion cascades to directly maximize influence
• Assumption: the candidate seeds have started a diffusion in the past
• Use greedy,  but compute a seed’s influence spread by its diffusion 

cascades:
• Choose the diffusion cascade that provides the best marginal gain 

using DNI
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• Train-test split of the cascades based on time of the initial  post

• Simpler (but wrong) evaluations:
– Sum of seeds’ average test 

cascade size
– Sum  of seed’s follows, mentions 

or retweets

• Number of distinct nodes influenced
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DiffuGreedy



[Panagopoulos et al., ICWSM ‘20]

• Influencers create or copy more?
• Rank initiators in the test set based on success metrics.
• Successful influencers are more prone to start than participate in train 

cascades 
• Derive only the context of the cascade initiator.

• Utilize their cascades and 
inf2vec to learn influence and 
susceptibility embeddings
between them and the rest of the 
network

• Use these embeddings to 
perform influence maximization

94

Learning Influence for IM



• Embed at the same vectors:
• The probability of influencing a node
• The initiator’s aptitude to create lengthy cascades

• Hidden layer S is updated by both inputs, in an alternating manner
• S and T form the influence likelihood between nodes
• |S| captures the nodes’ cascade size

Classify influenced node Regress cascade size
Hidden 𝑧!,# = 𝑆#𝑇 + 𝑏! 𝑧$,# = 𝑆#𝐶 + 𝑏$

Output 𝜑! 𝑆# =
𝑒% &!,#

∑#'∈) 𝑒% &!,#$
𝜑$ 𝑆# = 1/(1 + 𝑒% &%,# )

Loss 𝐿! = 𝑦! log 𝜑! 𝑆# 𝐿$ = 𝑦$ − 𝜑$ 𝑆#
*
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Learning INFluencer Vector (INFECTOR)

[Panagopoulos et al., TKDE ‘20]



96[Panagopoulos et al., TKDE ‘20]

INFECTOR



• Use diffusion probability matrix to compute influence spread:

• Difference between influence and diffusion probabilities
• D does not require the existence of an edge in the network

• Advantage: Captures higher order correlations that IM techniques 
fail to
• If v appears in the diffusions of u and z appears in the diffusions of v but 

not in u’s

v

u z

𝑝!,# 𝑝#,%

𝑝!,%
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Reformulation of the Problem



• Disadvantage: Too many edges (essentially a fully connected 
influence network) 

• Define an expectation of a candidate’s seed influence spread:

• Use it to diminish the pool of candidate nodes
• For a seed s its influence spread is the total edge weight of the 

nodes it influences and is given by 

98
[Panagopoulos et al., TKDE ‘20]

Reformulation of the Problem



• Optimize σ7 s in a greedy manner.
• Since there are no higher order paths, remove the node added in 

each iteration

• The spread is submodular & monotonic  -> Use CELF for 
optimization

99
[Panagopoulos et al., TKDE ‘20]

Influence Maximization with INFECTOR
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IMINFECTOR – Experimental Results

[Panagopoulos et al., TKDE ‘20]
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IMINFECTOR – Experimental Results



• Learning influence
– Data mining and probabilistic perspective

• Diffusion prediction
– Recurrent neural networks
– Point Processes
– Combination

• Influence maximization with learnt parameters
– Improve efficiency and effectiveness using the cascades 

Part III Summary
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Part I. Introduction

Part II. Traditional influence maximization

Part III. Influence and diffusion learning

Part IV. Learning influence maximization

Part V. Online influence maximization

Part VI. Summary and open problems

Outline of the Tutorial
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Part IV. Learning IM
• Learning combinatorial optimization problems
• Learning Influence Maximization

• Graph Neural Networks
• Deep Reinforcement Learning



Learning Combinatorial Optimization

105[Dai et al., NeurIPS ‘17]

• Can we learn heuristics for combinatorial optimization?
• Use graph representation learning to capture the state of a graph.
• Use reinforcement learning to learn how to make sequential decisions.



Graph Neural Networks Basics

106

• Learn how to represent nodes using a weighted combination of 
their features and their neighbors’ features

• Mostly used for semi-supervised learning and graph 
classification
[Hamilton et al., NeurIPS ‘17]



Graph Neural Networks Basics

107[Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu ]

• Each node aggregates the features of her neighbors using a parameterized 
non linear combination, i.e. a neural network

• Train the model to adjust the WR&WS parameters such that the outcome is 
optimized

• Each layer’s node 
representation is 
used as input to 
the next layer

• The node’s 
representation in 
the final layer is 
utilized for the 
end task



Learn CO with DQL 

• Given graph learning embeddings, we learn the greedy sequential algorithm 
for the minimum vertex cover problem using Q-learning:

• In every step, choose a node at random or based on the Q function (e-greedy)
• The nodes used up to now are tagged with a 1 in the initial representation h&
• The Q function uses the node embedding and the sum of node embeddings derived from l

layer to represent the action and the graph state:

• The policy is greedy and deterministic:  always the node with the highest Q-
value is used

• Keep choosing nodes until all edges are covered

• One episode corresponds to solving the problem i.e. repeating steps 1-4 for 
one graph

106
[Dai et al., NeurIPS ‘17]



FINDER

107

• Learn how to maximize influence through dismantling the network:
• Iteratively find the nodes that would decrease the size of the giant connected 

component

• This is equivalent to influence maximization in the linear threshold model  
[Morone and Makse, Nature 2015]

• Use GraphSage to compute the graph into node and graph 
representations.

• In each step, DQN chooses an action, i.e. a node to remove
• The new state is the graph after removing the chosen seed and its edges.
• The reward is the accumulated network connectivity of chosen seed set S

[Fan et al., Nature Machine Intelligence ‘20]



FINDER
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[Fan et al., Nature Machine Intelligence ‘20]



FINDER
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[Fan et al., Nature Machine Intelligence ‘20]



• Learning heuristics for combinatorial optimization
– Graph and node embedding for encoding
– Q learning for decoding
– Used for minimum vertex cover, maximum cut etc.

• Learn influence maximization
– Optimize for the network dismantling process

Part IV Summary
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Part I. Introduction

Part II. Traditional influence maximization

Part III. Influence and diffusion learning

Part IV. Learning influence maximization

Part V. Online influence maximization

Part VI. Summary and open problems

Outline of the Tutorial
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114

Part IV. Online Influence 
Maximization

• Repetitive Campaigns
• Multi-armed bandits with edge feedback



Online Influence Maximization

112

• What if we need to estimate the probabilities of influence without having 
previous diffusion cascades?
• Learn while generating data

• Perform multiple rounds of IM. Use the influence spread in each round to 
estimate the network probabilities

• Given a budget of N trials with k activated nodes, find the seed set of size 
n that maximizes the influence spread throughout all trials

• Exploitation vs. Exploration: 
• Maximize the influence spread of the algorithm in each round
• In the same time, estimate the influence probabilities in the edges

[Lei et al., KDD ‘15]



Online Influence Maximization

113

• Assign to each edge a Beta distribution 
• Run an IM algorithm on the graph using the current edge probabilities
• Receive a feedback based on the influence spread estimated
• Update the edge probabilities

[Lei et al., KDD ‘15]



Online Influence Maximization

114

• Assign a beta distributions in each edge e:

• 𝜇A =
%D

%DBCD
, 𝜎A =

D
%DBCD

%DCD
%DBCDBD

• 𝑝A = 𝜇A + 𝜃𝜎A

• θ=0 in exploitation, θ=1 exploration to increase the variance

• Local update: Increment a* when the edge activates and b* when 
it does not

• A θ used in a successful round, should be more likely to be 
reused in the future 
• Learn θ using exponentiated gradient [Cesa-Bianchi et al. 2006]

[Lei et al., KDD ‘15]



Online Influence Maximization

115[Lei et al., KDD ‘15]



Combinatorial Multi-Armed Bandits

116

• Each node is an arm in a multi-armed bandit
• M arms with one reward each
• Pull arms in T rounds and receive reward
• Arm pull is binary, hence MLB is suitable for the task

• Begin with uniform priors and choose seeds at each step

• Minimize the difference between choosing the best arm and 
the chosen algorithm i.e. the regret R 

[Cautis et al., Tutorial KDD ‘19]



Multi-Armed Bandits for IM

117

• Arms are the edges and have an unknown expectation

• In each round, a super-arm consisting of a subset of the e arms S ⊆
2T is selected outgoing from at most k nodes

• Oracle: Use the greedy using the current probabilities in each step to 
find the best set of nodes 

• The diffusion is run and the outcomes of all edges is revealed.

• The reward of a super-arm depends on the expected reward of all 
arms and the arms in S

[Cautis et al., Tutorial KDD ‘19][Chen et al., JMLR ‘16]



Multi-Armed Bandits for IM

118
[Cautis et al., Tutorial KDD ‘19][Chen et al., JMLR ‘16]



• Influence maximization in multiple rounds
• Learn the influence parameters while finding the best seeds

– Observe in each round which edges are activated by the seed set

• An upper confidence bound on edge probabilities
• MAB with edge-based feedback

• Left out semi-bandit feedback [Wen et al NeurIPS 2017] and 
model-independent online IM [Vaswani et al ICML 2017]

Part V Summary
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Part I. Introduction

Part II. Traditional influence maximization

Part III. Influence and diffusion learning

Part IV. Learning influence maximization

Part V. Online influence maximization

Part VI. Summary and open challenges

Outline of the Tutorial
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Part V. Summary
• Overview
• Research directions
• List of references



Algorithmic tools
and

Machine Learning models
to

understand
maximize
predict

influence spreading
in

social and information networks

Summary
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• Topic-aware IM using information-rich cascades 
– Content, user profiles, locations, time

• Online and adaptive IM

• Learn IM for the independent cascade model

• Use influence for efficient/scalable GNNs

• Use IM to find nodes for adversarial attacks 

Open Research Challenges
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Thank You! Questions? 
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