o | " s
D | université lrrz2ia —~

Central eSupél ecC PARIS-SACLAY INVENTEURS DU MONDE NUMERIQUE

Influence Learning and Maximization

George Panagopoulos Fragkiskos D. Malliaros
Ecole Polytechnique CentraleSupélec, Inria
Institut Polytechnique de Paris Paris-Saclay University

E%ICWE 2021

eianm' Franc® 21°T INTERNATIONAL CONFERENCE ON WEB ENGINEERING

May 18, 2021

Slides at: http://fragkiskos.me/projects/influence_learing_tutorial/

Acknowledgements

« Partially based on material by
— Jure Leskovec (Stanford University)
— B Aditya Prakash and Naren Ramakrishnan (Virginia Tech)

— Cigdem Aslay (Aarhus Univ.), Laks V.S. Lakshmanan (UBC),
Wei Lu (LinkedIn), Xiaokui Xao (NUS)

— David Kempe (USC)
— Amit Goyal (University of British Columbia)
— Manuel Gomez Rodriguez (MPI-SWS), Le Song (Georgia Tech)

Thank you!

What We Will Cover

« Motivate the problem with real-life applications
« Go through different approaches

« Describe the most prominent/representative solution of each
approach

 Briefly outline similar solutions
« Mention theory but won't dive deep into it
« Focus on the advantages and disadvantages

Let’s make interactive,
so please ask questions whenever you want!

Outline of the Tutorial

Part I. Introduction

Part Il. Traditional influence maximization
Part Ill. Influence and diffusion learning
Part IV. Learning influence maximization
Part V. Online influence maximization

Part VI. Summary and open challenges

Part l. Introduction

 What is influence
 Exemplary applications

« Models of information diffusion
 Influencer identification

Activity-Rich Interconnected World

Fluid Mechanics

Material Engineering

Crauts
Computer Science brookegy oosciences
‘Operations Research
Astronorty & Astrophysics
Computer Imaging =
Mathematics ()
Powor Sysoms

Physics

Telecommunication
Electomagnetc Efgineering

Control Theory.

Chamical Engineering

Probabilty & Statistics
)/ Eqvironmental Chemisiry & Microbiology

Business & Marketing

Economics Gecurahy
Sociology Grop Science
Politcal Science Ecology & Evolution
Law

Environmontal Health

4 Vedical Imaging

Antvopoiony .
Molecular & Cell Biology

Parasiology

Orthopedios _ Veterinar

Dentisry

Medicifies..
Ophthaimology Ciation flw witr fleld
Gitaion flow rom B 10 A

Orolaryngalogy ~
‘Gastroenterology

Pathology

Urology
Gitation flow from A to B

Dermatology Rheumatology
Gitation low out of field

Information networks

flick

WIKIPEDIA

deezer

) YouTube -

mMiner digg ‘ dblp o @SPOtifV” 6

Influence and Information Propagation

ran® 217 NTRNATONALCONFEREIE O WES EXGINER)

o , O
[/4
v v

Individuals are connected, performing activities

r

-

friends)
collaborators
followers

r

subscribers

J

-

post
comment

share, retweet
like

Influence aims to measure the impact of interactions

on the actions of individuals

\

/

Twitter & Facebook Post Sharing

% Ellen DeGeneres {3 w Follow
&9 @TheEllenShow

If only Bradley's arm was longer. Best photo ever. #oscars
10:06 PM - 2 Mar 2044

2,482,896 RETWEETS 1,182,330 FAVORITES < 3 %

Influence and Diffusion in Viral Marketing (1/2)

« Product adoption by the “word of mouth” effect
— Senders and followers of recommendations

[Leskovec et al., ACM TWeb ‘07], [Aral and Walker, Management Science ‘11]

| Marketing (2/2)

ira

\'J

=
c
O

Influence and Diffus

10

[Leskovec et al., ACM TWeb ‘07], [Aral and Walker, Management Science ‘11]

Social Media Influence and Marketing

N0
oW co

Vote for X

Q"

Social Media Influence

Followers

)“

[Prakash and Ramakrishnan, KDD ‘16] 11

News and Rumor Spreading

Time >

>
o

100 ' B 100

100
True
10 e False 10 10
& 4 g g 1 {
4 n 5
o 0.10 8 o010 o 0.10
@) O O
0.01 0.01- | 0.01
0.001 0.001 . , 0.001 .
1 10 100 1 10 100 1000 10K 100K 1 10 100 1000 10K 100K
Cascade Depth Cascade Size Cascade Max-Breadth

False news spread faster thawn the truth

[Vosoughi et al., Science ‘18] 12

Facebook’s ‘Intent to Vote’ Experiment (1/2)

Can someone use online social networks to shape a massive
behavioral change?

« A simple news feed post was used to motivate voting

« Users could claim they voted by pressing “l voted” and access
further information about the elections

a Informational message
« 61 million FB users split in three randomized ey W S Ty
roups:
g p % om0 S8 yous § »em: ol (e e
— Simple message (611K): the message % 5 g

included the count of FB users who
reported voting

Social message

— Social message (60M): The message Today s Election Day

included a list of the users’ friends that o SEwsscsus
have also voted appears Hhb bution o el your Fnd you voed
\ + 4 =

— Control group (613K): no message

- * ol Ki Jaime Settie, Jason Jones, and 18 other
-~ ~ friends have voted

[Bond et al., Nature ‘12] 13

Facebook’s ‘Intent to Vote’ Experiment (2/2)

« Users who received the social message were more likely to click
‘| voted” than users with the simple message

« Friends of users who received the social message were more likely
to vote than friends of users with no message

;\3 0.100 o *
Py
| . . g 0075+ .
« As the interaction increases, so 2 o
does the observed per-friend ‘- R
effect of friend’s treatment on a o 0'025_] | = | | | I
) i N
user’s expressed voting z CTE I b |
e
o —0.025
E
2-—0.050—
Online messages might influence a & 0075 + Observed value
variety of offline behaviours S o100t seoearo™

1 2 3 45 6 7 8 9 10
Decile of user—friend interactions

[Bond et al., Nature ‘12] 14

Information Propagation is Almost Everywhere

« Social collaboration
* |nformation Diffusion
» Viral Marketing

« Epidemiology and Public Health amazon

« Cyber Security @

* Human mobility

+ Games and Virtual Worlds 9 symantec.
« Bioinformatics \Q‘g IS
o< o<—
\

Research Theme

ANALYSIS
Understanding

PoLICY/

ACTION
Managing

Large real-world networks
& propagations

[Prakash and Ramakrishnan, KDD ‘16] 16

Research Theme - Social Media

ANALYSIS

cascades in
future?

PoLICY/

ACTION
Modeling Tweets How to do

spreading better
[Prakash and Ramakrishnan, KDD ‘16] mal’keti ﬂgr? 17

Opportunities for Data Mining and Maching Learning

Algorithmic tools ------------ : Part |
and T " Part i
Machine Learning models---------;
to Part IlI
b -»>
4 understand) :;::: c,
maximize
_ predict Y

influence spreading
N
social and information networks

18

What is it All About?

Part I. Basic models Part Il. Influence maximization
for information diffusion and ' find a seed set S of size k that
detection of influential spreaders maximizes the infuence spread

A 6/0\3_ Part lll. Influence and diffusion
O 7\ learning
O o 0 - analyze real information cascades to
- \O \ boost influence maximization

l

Part V. Online influence

maximization Part IV. Machine learning
learning influence probabilites models
and maximizing influence learn how to predict and maximize

simultaneously influence

19

Information diffusion models

Information Cascades

« “Contagion” that spreads over the edges of the network
« |t creates a propagation tree, i.e., a diffusion cascade

Information cascade
(propagation graph)

Network

21

How Do We Model Influence/Diffusion?

 Decision based models

— Models of product adoption, decision making

* A node observes decisions of its neighbors
and makes its own decision

— Example:
* You attend this tutorial if k of your friends do so too
* Probabilistic models

— Models of influence or disease spreading

» An infected node tries to “push”
the contagion to an uninfected node

— Example:

* You are influenced with some probability
from each active (i.e., influenced) neighbor
in the network

[Easley and Kleinberg, Networks, Crowds, and Markets ‘10] -

Independent Cascade (IC) model

Independent Cascade Model (1/2)

 [nitially some nodes S are active
- Each edge (u,v) has probability (weight) p,

Each activated node
has a single chance to
activate its neighbors

* When node u becomes influenced
— It activates each out-neighbor v with probability py,

* Influence spreads through the network
[Kempe et al., KDD ‘03] o4

Independent Cascade Model (2/2)

 The model is simple but requires
parameters proportional to the # of
edges

— Estimating influence weights from
the data

— Next part of the tutorial

« Solution 1: Make all edges have the same weight

— Simplistic and unrealistic approach is many practical applications

— Similar to the SIR (Susceptible-Infected-Recovered) model in
epidemiology

« Solution 2: Degree-based probabilities or similar
— E.g., edge from u to v has probability 1/ k, of activating v (k, : degree of v)

25

Linear threshold model (LT)

Linear Threshold Model

« A node v has arandom threshold 6, ~ U[0,1]
« A node v is influenced by each neighbor w according to a weight

b,,, such that
Y, st

weND(v)

« A node v becomes active when at least 6, fraction of its neighbors
are active

z O,: fraction of neighbors of
bvw Z 97) » | g Vv

that should be active in
weX(v) order for v to become active

X(v): set of active
neighbors of v

[Kempe et al., KDD ‘03] 07

Q Inactive Node
‘ Active Node

. Threshold

. Active neighbors

0.2

() |
0.2 S’cO‘P!

@

Become active if: Z byw = O,
weX(v) o8

Identification of influential spreaders

Identification of Influential Nodes: the Process (1/2)

« Typically, a two-step approach:

1. Consider a topological or centrality criterion of the nodes of the
network

2. Rank the nodes accordingly

3. The top-ranked nodes are candidates for the most influential
ones

4. Simulate the spreading process over the network to examine
the performance of the chosen nodes

« E.g., using the IC or the LT model

[Sei and Makse ’13]
30

Identification of Influential Spreaders

- Straightforward approach: consider degree centrality — «* .5°" .

= 0. 0. .
— High degree nodes are expected to be good spreaders . :.'J':.- .
— Hub nodes can trigger big cascades 7 ,.'. ‘ . '

 However: degree is a local criterion
— Bad instance: star subgraph

« Core-periphery structure of real-world networks
O
Q

Nodes of
equal degree (8)

31

Degeneracy and k-Core Decomposition

@ Core numberc; =1

@ Core number ¢; = 2

@ Core numberc; = 3

Graph Degeneracy 6*(G) = 3

Go=G

G, = 1-core of G
G, = 2-core of G
Gj3 = 3-core of G

Go2G12G220Gs

Fast detection of dense and cohesive subgraphs

[Seidman, Social Networks '83] [Malliaros et al., VLDB Journal '20] 30

The k-core Decomposition Finds Good Spreaders

s

Node B
Node A
Degree 96
Degree 96 Core number 26

Core number 63

Strategically placed nodes, as detected by the
k-core decomposition are able to spread
information to a larger portion of the graph

- The core number is a better spreading
predictor compared to the degree

[Kitsak et al., Nature Physics ‘10] 33

How Close to the Optimal Spreading?

« Compute the imprecision function g(p) that tests how close is each metric

to the optimal spreading

— For a given fraction p:

1. Find p% of the most efficient spreaders and compute the average total spreading M

2. Find p% nodes with the highest core number and compute the average total spreading

Mcore

3. Repeat the same for degree and betweenness centrality

Mcore (p)

=1-
8(p) Meﬁ(p)

* The k-core is the most accurate spreading
predictor

» Degree outperforms the global
betweenness centrality

Imprecision function g(p)

0.60
0.50 - betweenness o,
. etweenne |

040 = A
0.10 degree . ok

_..-----'0' —— _o_____
0.05 - k-core ks
01— - | l

2) - : i

Fraction p (%)

34

K-truss Decomposition (1/2)

The k-core decomposition often returns a relatively large number of
candidate influential spreaders

— Only a small fraction corresponds to highly influential nodes
 How to further refine the set of the most influential nodes?

Apply the K-truss decomposition [Cohen, TR 08], [Wang and Cheng, VLDB ‘12]
— Triangle-based extension of the k-core decomposition

— Each edge of the K-truss subgraph participates in at least K-2 triangles

Truss set T

C: set of nodes in the maxima k-core subgraph
T: set of nodes in the maximal K-truss subgraph

[Malliaros, Rossi & Vazirgiannis, Scientific Reports '16] 35

K-truss Decomposition (2/2)

Time Step
Method 2 4 6 8 10 Final step o Max step

EMAIL- truss 8.44 46.66 204.08 418.77 355.84 ; 2,596.52 136.7 33
ENRON core 4.78 31.97 152.55 367.28 364.13 ! 2,465.60 199.6 37
top degree 6.89 34.13 155.48 360.89 357.08 . 2,471.67 354.8 36

EPINIONS truss 4.17 19.70 75.04 204.14 329.08 ;| 2,567.69 227.8 37
core 3.45 14.72 55.27 158.56 280.03 ; 2,325.37 327.2 43

top degree 4.22 16.03 58.84 166.23 289.49 ! 2,414.99 331.7 47

WIKI- truss 292 6.92 15.27 28.73 42.46 560.66 114.9 52
VOTE core 192 478 10.65 20.66 32.40 466.01 104.5 57
topdegree 243 546 12.05 23.05 35.55 502.88 104.5 62

EMAIL- truss 11.62 62.25 240.97 584.87 725.42 , 5,018.52 487.94 36
EUALL core 9.85 40.82 158.72 433.81 644.76 | 4,579.84 498.71 38
top degree 17.96 39.93 144.69 503.18 548.25 & 4,137.56 ' 1,174.84 39

truss: avg. spreading of the nodes of T
core: avg. spreading of the nodes of C—T
top deg: avg. spreading of the |C —T| top
degree nodes

« The truss method achieves higher
infection rate during the first steps

» Better and faster spreading

[Malliaros, Rossi & Vazirgiannis, Scientific Reports '16]

36

Part | Summary

« Combine centrality criteria with models of information
propagation

* The core decomposition provides an effective way to detect
influential spreaders
— Outperforms more ‘complex’ centrality criteria
— How to select multiple influential spreaders?

 Heuristic methods

— No theoretical guarantees about the performance of the metrics

— E.g., what will happen if all the nodes of a graph have ~ the same core
number?
2R

R 7 RAR0eR

37

Outline of the tutorial

Part |. Introduction

Part Il. Traditional influence maximization
Part Ill. Influence and diffusion learning
Part IV. Learning influence maximization
Part V. Online influence maximization

Part VI. Summary and open challenges

38

Part ll. Traditional IM

 The IM problem

 The Greedy algorithm

- Scalable algorithms (CELF, Reverse Influence
Sampling, Sketch-based Influence Maximization)

« Overview of scalable heuristics

Most Influential Set of Nodes

« S:isthe initial active set
« o(S): The expected size of final active set (expected influence)

« Set Sis more influential if o(S) is larger

o(ia, b}) < o(ia,c}) < o(ia, d})

[Domingos and Richardson, KDD ‘01]

... Influence set
X, of node u

40

The Influence Maximization Problem

Problem «is user-specified parameter - budget)

« Given a graph G=(V, E) and a diffusion model to simulate spreading
« Find a seed set S of k nodes that maximizes spreading o(S)

— The expected influence spread o(S) = Zpg(jg(S)
gcG

Complexity of IM

 The IM problem is NP-Hard under both the
|IC and LT models

— Reduction from instances of the set cover
problem

[Kempe et al., KDD ‘03] 41

Properties of the Spread Function

« Function o(-) has with two properties:
— O() IS MONOtoNe: (activating more nodes doesn’t hurt)

o(SU{v}) > 0(5),YVoe V,YSCV

— O() IS submodular: (activating each additional node helps less)
adding an element to a set gives less improvement
than adding it to one of its subsets:

J(SU) —0o(S) = o(TU o) —a(T) SCTCV

Y h 4
Marginal gain of adding a Marginal gain of adding a
node to a small set node to a large set

If o(+) is monotone and submodular, then we can have an
approximate solution with theoretical guarantee

[Kempe et al., KDD ‘03] 42

Submodularity of Influence Spread o(S)

* The live-edge model

— Flip all the coins at the beginning and
record which edges are activated
successfully

« Sample a random subgraph
— Now we have a deterministic graph
— Possible world of a probabilistic graph

« 2lElpossible outcomes

Influence sets
for realization i :

« What is the influence set X, of node u”

X4 = {a,f,c,g}
— The set of nodes reachable by live-edge Xy = {b,c},
paths from u XJ = {c}

Xdi= {d,e,h}

[Kempe et al., KDD ‘03] 43

The Greedy Approximation Algorithm

The Greedy Algorithm

Input: graph G=(V, E), parameter k and an influence model
Output: set S

« Start with S « ()

o While IS| <k e ,
- Take node u thajarg max o (SU{u}) —a (S) i
— Let S« SU {u}=m===m=mmmmmmmmmmmmm - !

Theorem: The Greedy algorithm is a (1 — 1/e) approximation

— The algorithm will find a set S for which o(S) > 0.63*c(OPT),
where OPT is the globally optimal set

— The resulting set S activates at least (1- 1/e) > 63% of the
number of nodes that any size-k set S could activate

— (e is the base of the natural logarithm, e = 2.71)
[Kempe et al., KDD ‘03] 44

Evaluating o(S) and Overall Complexity

* How to evaluate o(S) for a set S?

— Exact computation of o(S) is #P-hard (class of counting
problems)

« Very good estimation by simulation
— Use Monte Carlo simulations (sampling-based approach)
— Repeating the diffusion process often enough (polynomial in n)
— Greedy algorithm is now a (1-1/e - €)-approximation, €>0
— € depends on the number of possible worlds (simulations)

« Complexity of the Greedy algorithm: O(n-k-R-m)
— Nn: number of nodes
— m: number of edges
— k: size of the seed set

— R: number of simulations (i.e., number of possible words)
45

Scalable Algorithms — CELF

CELF (Cost-Effective Lazy Forward Selection)

* In step i+1 of the Greedy algorithm
Siv1 = arg max o (SiU{u}) —a (Si)
— Node u maximizes the marginal gain
Oi(u) = 0 (5; U {u}) — o (Si)
 From the submodularity property, we have that

0 (S;U{u)) = (Si) 20 (S;Uu})—o(S;) fori<j

— For every u: 6;(1t) > 6(u), fori < jsince 5; C S;

The marginal gains 6;(1) only srink or . -j

remain the same as i increases . | .
Activating node u in step i helps more

than activating it at step j (j>i)

[Leskovec et al., KDD ‘07] 47

CELF - Lazy Hill Climbing

* Idea: use marginal gain 6; as an upper-bound on 6; (j > i)

CELE Marginal gain

1.

Compute and sort the marginal gain 0; of all
nodes

Add the first node to the seed set

Compute the marginal gain from the top of
the list

Re-sort every time you compute a node’s
new marginal gain

[Leskovec et al., KDD ‘07], [Leskovec, Stanford CS224W] 48

CELF - Lazy Hill Climbing

* Idea: use marginal gain 6; as an upper-bound on 6; (j > i)

CELE Marginal gain

1.

Compute and sort the marginal gain 0; of all
nodes

Add the first node to the seed set

Compute the marginal gain from the top of
the list

Re-sort every time you compute a node’s
new marginal gain

[Leskovec et al., KDD ‘07], [Leskovec, Stanford CS224W] 49

CELF - Lazy Hill Climbing

* Idea: use marginal gain 6; as an upper-bound on 6; (j > i)

CELE Marginal gain
1. Compute and sort the marginal gain 0; of all Si={a}
nodes S,=la.b!
2. Add the first node to the seed set
- - b .
3. Compute the marginal gain from the top of
the list e .
4. Re-sort every time you compute a node’s
new marginal gain ¢ l:

[Leskovec et al., KDD ‘07], [Leskovec, Stanford CS224W] 50

Key Points for CELF

400 — | I
|
1 .
0 L -=xhaustive search A - Theoretical quarantess
S 300} ! (All subsets) e
S | s Inthe worst case, it
2 : Naive e erforms as the Greed
2 200~ ! greedy\)f) y : ’
=) . - » In practice, 700x faster
2 I o7 .
£ 100, | L CELF. | than the Greedy algorithm
S A - CELF + Bounds
o , "\.‘ l
/"_.’
Op—=F——¢—¢—9¢—+—¢—+—¢
2 4 6 8 10

Number of blogs selected

[Leskovec et al., KDD ‘07] 51

Scalable Algorithms —
Reverse Influence Sampling

Reverse Influence Sampling

« Algorithms that ensure (1 1 e) - approximation of the
e

expected influence spread

« Scalability (near-linear time) is achieved relying on the
concept of Reverse Reachable Sets (RR set)

53

Reverse Reachable Sets (RR Sets)

 An RR setis a random sample of G
« Generation of RR sets by computing reachable nodes under the |C model

RR set = {A}
Start from a D
random node y \
0.5
E 0.4
—o04) .
&4 06
A 0.7
ot

[Borgs et al., SODA ‘14], [Aslay et al., Tutorial at WSDM ‘18] 54

Reverse Reachable Sets (RR Sets)

 An RR setis a random sample of G
« Generation of RR sets by computing reachable nodes under the |C model

RR set = {A}
Start from a D
random node y \
l 0.5
E 0.4
| T ——C
Sample its 04
incoming edges 09
A 0.7
ot

[Borgs et al., SODA ‘14], [Aslay et al., Tutorial at WSDM ‘18] .

Reverse Reachable Sets (RR Sets)

 An RR setis a random sample of G
« Generation of RR sets by computing reachable nodes under the |C model

RR set = {A}
Start from a D
random node y \
l 0.5
E 0.4
Sample its 04\’ C
incoming edges 09
l A 0.7
Add the sampled R B

neighbors

[Borgs et al., SODA ‘14], [Aslay et al., Tutorial at WSDM ‘18] 56

Reverse Reachable Sets (RR Sets)

 An RR setis a random sample of G
« Generation of RR sets by computing reachable nodes under the |C model

RR set = {A, C}

Start from a
random node

l

Sample its
incoming edges

|

Add the sampled |
neighbors

[Borgs et al., SODA ‘14], [Aslay et al., Tutorial at WSDM ‘18]

57

Reverse Reachable Sets (RR Sets)

 An RR setis a random sample of G
« Generation of RR sets by computing reachable nodes under the |C model

RR set = {A, C, B, E}

Start from a
random node

l

Sample its
incoming edges

|

Add the sampled |
neighbors

The RR set is a sample set of nodes that can influence node A

58

Influence Estimation with RR Sets (1/2)

« Suppose that we randomly generate a lot of RR sets

R1={A, C, B}

R2 = {B, A, E}

R3 = {C)

R4 = (D, C} e

R5 = {E} / k

E—24) o

« Node C appears very frequently &4 06

— C has a large influence A 07/

[Borgs et al., SODA ‘14], [Aslay et al., Tutorial at WSDM ‘18] 59

Influence Estimation with RR Sets (2/2)

Pr(node v appears in a random RR set)

« Example

1

= (v’s expected influence)

— Node C appears in % RR sets

— C’s expected influence is roughly g n

[Borgs et al., SODA ‘14], [Aslay et al., Tutorial at WSDM ‘18]

R1={A, C, B
R2 = (B, A, E}
R3 = {C}

R4 = {D, C}
R5 = {E}

60

Influence Estimation with RR Sets (2/2)

Pr(node set S overlaps a random RR set)

1 :
= (S’s expected influence)
« Example Al =, 8
— {A, E} overlaps > RR sets R2=1B.A 8
5
| . . 3 R3 = {C]
— {A, E}'s expected influence is roughly =N R4 = (D, C]
R5 = {E}

Computational benefit of RR sets

* The simulations to estimate influence are not repeated for each candidate seed
» Use the same RR sets to estimate the influence of all nodes

[Borgs et al., SODA ‘14], [Aslay et al., Tutorial at WSDM ‘18] 51

Reverse Influence Sampling — The Algorithm

1. Generate a number of RR sets

— A seed set’s influence spread is analogous to the number of RR sets it covers
— Prob of a node being influenced by a seed = Prob of the seed existing in its RR set

2. Apply the Greedy algorithm to find a k-set that overlaps the most number of
RR-sets

— Maximum cover problem

« How many RR sets to sample?

 (Count the total cost of RR set construction
« Stop when the cost > a threshold

« Example graph: Cost =7
« Cost =1 for adding A
» Cost = 2 for adding C
« (Cost =2 for adding E and B
» Cost = 2 for cheching the last two edges (D, E), (A, B)

[Borgs et al., SODA ‘14], [Aslay et al., Tutorial at WSDM ‘18]

62

Summary of Reverse Influence Sampling

« Advantage of the [Borgs et al., SODA '14] algorithm
— The first near-linear time algorithm

1
— (1 e e) - approximation

— Time complexity: O((m + n)ke ™ log n)
« Drawbacks
— Cost-driven selection of the # of RR sets

 (Other ideas based on RR sets
— TIM

» Influence Maximization: Near-Optimal Time Complexity Meets Practical
Efficiency, Tang et al., SIGMOD '14

- IMM

« Influence Maximization in Near-Linear Time: A Martingale Approach,
Tang at al., SIGMOD ‘15

63

Scalable Algorithms —
Sketch-based IM (SKIM)

Sketch-based Influence Maximization

Overview of the idea
1. Take different realizations, producing a number of possible words

E'z\. — E\\, E'/\, E'/\D\,

¥ /] |
N N g

2. ldenify set S of k nodes with the largest influence in these instances
« 0o(S): the average number of nodes reached by S in the instances

Evaluating influence in a possible world takes O(m) time
Use sketches (signatures) to reduce the estimation time

[Cohen et al., CIKM ‘14], [Aslay et al., Tutorial at WSDM ‘18] o5

Reachability Sketches (1/2)

5, 0.1
Overview of the idea: 0.4 \
5 C
\ / 0.7
« Take a possible world G; and assign A
a random number in [0, 1] to each 0.3 > 805
node 1
« Compute the rank of each node v p V1
— The minimum number among the 0.3 \
nodes that v can reach = C
\ / 0.1
* |f v can reach many nodes, then its rank is A
likely to be small 0.3\ 2 05
» Use the rank of v to estimate the influence |
of vin G;

[Cohen et al., CIKM ‘14], [Aslay et al., Tutorial at WSDM ‘18] 66

Reachability Sketches (2/2)

0.1
Problem: influence estimation based on one rank D
would be inaccurate 0.4 \
=
C
« Keep multiple ranks to have a better \ / 0.7
estimate of the influence A

— E.g., the smallest ¢ values among the

nodes that v can reach 1
« Keep the smallest ¢ values among the 5 0
nodes that v can reach in all possible 4\
worlds extracted . 0.3, 0.

Co1 0.3
ldea \A/ o

« Use the Greedy algorithm
« Substitute the influence spread estimation 0.3,0.5 ~B 0.5

using the ranks of the candidate seed set

[Cohen et al., CIKM ‘14], [Aslay et al., Tutorial at WSDM ‘18] o7

Sketch-based IM (SKIM)

0.1,0.2,0.5

1. Generate a number of possible words 2
2. Construct reachability sketches for all w0 V \H, 02 06

nodes e

— Each node will obtain ¢ ranks \ /
3. Use the Greedy algorithm A

— To evaluate the influence of a seed set S, 03,08, m B

check the ranks to derive the estimation 0.7. 0.6, 0.8

— Smaller rank = higher influence, for node v

Theoretical guarantees

« Expected running time: near-linear to the total number of
possible worlds

 When c is large enough, Ql . e) - approximation w.r.t. the

number of possible world
68

Experimental Evaluation

- GRE | —m— DEG' | =4l | T
™ Sie o Skeal @l
= e -
@) | O |
EELS S .
5 1 5 | GRE: Greedy
— - — . .
° o Ly 2=z IRIE: scalable heuristic
| | [| [|
0 500 1000 0 500 1000 * DEG: degree-based
Slashdot: seed set size TwitterF's: seed set size
« SK: Sketch-based IM
|]]] |]]] |
—_— .,.-—.—.—.—.-.-H'“ .
=i 1 %8
— e |
]]
= B
+ + o
£ - g
o o
= =
= =
= O = | O
| [| | [|) | [| | [|
0 500 1000 0 500 1000
Slashdot: seed set size TwitterF's: seed set size

[Cohen et al., CIKM ‘14] 69

Scalable Heuristics — MIA, LDAG, SimPath

Scalable Heuristics for IM

Running time Inefficient 1-1/e- €

of the algorithm ——— approximation

Simple Greedy Algorithm

* The majority of influence flows within [Kempe et al.. KDD ‘04]

small neighborhoods
» Extract DAGs per node

« Compute the spread on these DAGs « Explore simple paths in the

neighborhood of each node
« Memory usage is low NP-hard
LDAG Algorithm » Spread achieved is better

[Chen et al., ICDM ‘10]

Slmpath
[Goyal et al. ICDM "11]

|deal
Fast \ Algorithm
Faster
No approximation *
guarantees

Expected spread of influence achieved

[Goyal et al. ICDM “11] 71

Part Il Summary

* The Greedy algorithm
— Approximation guarantees
— Running time is high
« Main research focus on scalabilility
— With or without guarantees
« Mainly rely on the structure of the graph

— Real diffusion cascades (e.g., retweets) are not taken into
account

— Next part of the tutorial

72

Outline of the Tutorial

Part |. Introduction

Part Il. Traditional influence maximization
Part lll. Influence and diffusion learning
Part IV. Learning influence maximization
Part V. Online influence maximization

Part VI. Summary and open challenges

73

Part lll. Influence and diffusion
learning

Learning influence

Predicting diffusion
Recurrent Neural Networks
Point-processes

Learning influence for IM

Learn from Diffusion Cascades

Network inference:
— Social networks have an underlying

network, but the web of media doesn’t |

— Use the cascades to infer
the actual edges between
nodes in the web.

®->®»1—|—|—|—>#

Pairwise

Cascade
interactions

theguardian PEIEEHG

Earlier this month, he surprised his 847 friends on his private Facebook page

when he posted: "I just killed a pig and a goat." €<— Meme
Friday 27 May 201115.23 BST

FORTUNE Bl

As we detailed, an inkling of “Mark Zuckerberg’s new
challenge” popped up on his private Facebook page a few
weeks ago. On May 4, the 27-year-old billionaire told his
847 friends: “I just killed a pig and a goat” €— Meme

MAY 27, 2011, 7:18 PM EDT BUSINESS INSIDER B Node &

i He has stuck to his decision so far; his
recent Facebook status read, "I just killed a
pig and a goat." <— Meme

Network o 4

Over a social network, learn how users influence each other to:

— Predict the diffusion accurately
— Use it for influence maximization

[Gomez Rodriguez et al., Tutorial at KDD ‘15] 75

Learn from Diffusion Cascades

Network inference:
— Social networks have an underlying

network, but the web of media doesn’t |

— Use the cascades to infer
the actual edges between
nodes in the web.

®->®»1—|—|—|—>#

Pairwise

Cascade
interactions

theguardian PEIEEHG

Earlier this month, he surprised his 847 friends on his private Facebook page

when he posted: "I just killed a pig and a goat." €<— Meme
Friday 27 May 201115.23 BST

FORTUNE Bl

As we detailed, an inkling of “Mark Zuckerberg’s new
challenge” popped up on his private Facebook page a few
weeks ago. On May 4, the 27-year-old billionaire told his
847 friends: “I just killed a pig and a goat” €— Meme

MAY 27, 2011, 7:18 PM EDT BUSINESS INSIDER B Node &

i He has stuck to his decision so far; his
recent Facebook status read, "I just killed a
pig and a goat." <— Meme

Network o 4

Over a social network, learn how users influence each other to:

— Predict the diffusion accurately
— Use it for influence maximization

[Gomez Rodriguez et al., Tutorial at KDD ‘15] 76

Diffusion Cascades Example

Individuals posted music
from an artist whose name
matched the letter they were
assigned by a friend

Each node starts a new line
when their friends adopt the
cascade

Each friend increases radius
by starting their own cascade

Edges are colored from red
(early) to blue (late)

The diffusion tree of a cascade.
[Cheng et al. ICWSM ‘18]

77

Estimate Influence Weights

« Using a log of activities (diffusion cascades) and the structure of
the network

 When v retweets in a cascade attime ¢t
— Increase a,,, where u are all the previous nodes that v follows at t
— Augment Dt,, ,, with the time passed between u's and v's occurrence

4)
4 Ay, +1 Dtu,,,)
dt
_ Diffusion Cascade Y,

\ Follower Network /

t —_— u’v Dtu v
Puyv = e '

[Goyal et al. WSDM ‘10]

Estimate Influence Weights

 The exponential decay of influence is an empirically observed
phenomenon

« Under IC, the probability of v getting influenced in a diffusion

cascade at time t is the opposite of the probability of surviving
from all of its neighbors:

py=1-— 1_[(1-puy)
UEN (V)

« For prediction, use the above to define it a node will be
influenced based on a diffusion C and measure the

« For Influence Maximization, use probabilities as weights and
run SimPath

[Goyal et al. WSDM ‘10]

Learning Continuous Time Influence

 Influence probability is a function of the transmission delay

P(tvltu; au’v) = Ayup e_au,v(tv_tu) ': /\
WA S

* Infer the transmission rate a,,,, which may reveal an edge
« The survival function is the probability that v is not activated

by node u.

S(tvltu; au,v) =1 — P(tvltu; au,v)

,

[Gomez Rodriguez and Song, Tutorial at KDD ‘15] [Gomez Rodriguez et al., ICML “11] 80

Learning Continuous Time Influence

» Likelihood of activations and non-activations of a cascade Cby time T

Pl = | | 1] | s(Titsavm) = (| | Ploltusaus) | | 5ol @]

veC, t,,>T tu<ty k+u,

Not havmg infected m by G e by Staying uninfected by
time T other nodes

« Convex log-likelihood
» Inferred network needs to be in a very small scale (thousands of nodes)

» The inference accuracy increases as the number of cascades
INncreases

« Run PMIA, an IC-based heuristic for IM

[Gomez Rodriguez and Song, Tutorial at KDD ‘15] [Gomez Rodriguez et al., ICML “11] 81

Embedded Independent Cascade

Need to learn less parameters to battle overfitting

Define the influence probability based on a pair of /nfluence &

suscepltibility
1 0O

=fwTy) = —
Pu,v fGwTy) (53+T3+Z?111(53—T1l;)2)

1+e =
Instead of |E| parameters, learn [N|d embeddings in R/ I I

L(P:D) — ZdeD(ZvEd log(Pvd) + Zv,e& log(l _ onb)

Optimize using EM
Evaluate on predicting the diffusion of real cascade.

[Bourigault et al., WSDM ‘16] 82

Influence 2 vector

* Derive embedding's of influence using diffusion networks
« Use both, the network and the diffusion cascades

« For each node in a diffusion network, derive a context (similar to
word2vec) based on RWR and random sampling

d |eae.. b,c,e...

c |a,a.. d,a,e..

\Follower Network /

.

[d e b C a J
Diffusion Cascade

Qiffusion Network/

5 RWR 45 Random

$

[Feng etal., ICDE ‘18] 83

Influence 2 vector

« Use the node-context pairs to train a shallow NN
* Predict the course of the cascade using these representations

Hidden Layer S
d |eae.. b,c,e... »

Source embedding

x look up of node d

oO|lr|O|O|O

The output layer is the
Negative sampling with 10 target embeddings T

random nodes (NegQ)

P(e|ld) = log(o(z4.)) + Z log(o(—2g4y)) « Zge = SqTe + bg + by

ENeg

Output before activation

[Feng et al., ICDE ‘18] 84

Influence 2 vector

Dataset| Method AUC MAP | P@l0 | P@50 | P@100
DE 0.6183 | 0.0173 | 0.0121 | 0.0145 | 0.0132
ST 0.6874 | 0.1064 | 0.6735 | 0.3841 | 0.3091
EM 0.7095 | 0.1241 | 0.6261 | 0.4364 | 0.3572

Digg Emb-IC 0.6649 | 0.1047 | 0.5458 | 0.3912 | 0.3286
MF 0.8677 | 0.1347 | 0.5087 | 0.4059 | 0.3389
Node2vec | 0.6606 | 0.0219 | 0.0810 | 0.0718 | 0.0556
Inf2vec 0.8904 | 0.1793 | 0.7386 | 0.4750 | 0.3932
(stdev o) (0.0002) (0.0015) (0.0214)] (0.0107) (0.0049)
DE 0.6177 | 0.0026 | 0.0025 | 0.0048 | 0.0041
ST 0.6840 | 0.0242 | 0.1215 | 0.0871 | 0.0685
EM 0.7479 | 0.0260 | 0.1115 | 0.0773 | 0.0636

Flickr | Emb-IC 0.7582 | 0.0199 | 0.0955 | 0.0754 | 0.0622
MF 0.8699 | 0.0280 | 0.1044 | 0.0832 | 0.0703
Node2vec | 0.6233 | 0.0023 | 0.0010 | 0.0053 | 0.0048
Inf2vec 0.8778 | 0.0301 | 0.1254 | 0.0943 | 0.0759
(stdev o) (0.0011) (0.0004) (0.0054) (0.0009) (0.0007)

Results in predicting the diffusion

[Feng et al., ICDE ‘18]

Influence 2 vector

(¢) Node2vec (d) Inf2vec

Learned representations of pairs of nodes that appear frequently together in the
cascades of the Digg dataset

[Feng et al., ICDE ‘18] 86

Neural Networks for Diffusions

« Extensive work on predicting diffusion with temporal
neural networks:
— TopolLSTM [Jia et al. ICDM 2017]
— Cyan RNN [Wang et al. CIKM 2018]
— DeepDiffuse [Islam et al. ICDM 2018]
— FOREST [Yang et al. [JCAI 2019]

* The representation from these models can not be adapted
for other tasks, such as influence maximization, in a
straightforward manner

87

Hawkes Process for Diffusions

« Model the cascades as a set of interacting Poisson processes
1 4

——————— | g S . -| 1
EEE—
o3 Sa 5¢
..... » o .| 3"'
e =
2 5b
S | S Sy 1

« {S5,}is a set of marked events

« Probability of an event happening at node k depends on its background
rate 1, and its interaction with other nodes h

o p((sp,cppzy)|A h) =
[lk=1p(cn =k, 2z, = 0|Ag) * [T=1[lp=1P(c = v, 2, = nllhv,k(ATn’,n))

S, was caused by spike at time n’,

which belonged to node v

S, caused by background rate of node k

* Learn hy(At) = Wy, ge, (At) using Stochastic Variational Inference

[Linderman et al., ICML ‘14] 88

Recurrent Marked Temporal Point Process

« Use RNN to predict which node will get influenced next and when,
during a diffusion cascade

* The next node y;,; and its time t;,4, depends non-linearly on the history
h; (previously infected nodes and their times)

* Embed the history into a latent vector (hidden state of an RNN) and use it
for prediction

[~log Pusalhy)] [—togfr(tin) | [—logPlysalhiin)] [—logs"(t50) |
t 1 1t I 1

) r
h;_q o—»[hidden h;] :L hidden A4]

(t, yj)f [(tj41) = f(djs1|hy) ‘ (tj+1, yj+1)time

[Du et al., KDD "16]
89

Recurrent Marked Temporal Point Process

« To predict next node use a standard softmax output
« To predict next time use a point process with rate

A*(t) = exp(uth; + wt(t —t;) + b")

[— logP(yj+1|hj)] [—log f*(t;4+1)]

\ %44 vt

Output Layer

* wh
Recurrent Layer hidden h;

W?J

Wt [embedding y; J

Input Layer

I Wem
[]
Timing ¢, Marker y;

[Du et al., KDD ‘16] 90

Recurrent Marked Temporal Point Process

NYC Taxi Financial Stack Overflow MIMIC II
50 90
Methods Methods Methods Methods
92.5 fictMc fictMc fictme 68 I fictme
MC-0 MC-0 MC-0 MC-0
MC-1 MC-1 80 MC-1 60 MC-1
90.0 MC-2 MC-2 MC-2 MC-2
MC-3 MC-3 MC-3
RMTPP 45 RMTPP RMTPP
87, 2 R70 240
— S — —
o o) <)
S S S S
Wgs. L W 60 L
40
20
82.5 50
80.0 40
Methods Methods Methods Methods
1.15 Methods 2.5 Methods Methods 8 Methods
CTMC CTMC CTMC CTMC
Poisson Poisson 14 Poisson Poisson
1.10 Hawkes Hawkes Hawkes Hawkes
: SelfCorrecting 20 SelfCorrecting SelfCorrecting SelfCorrecting
ACD . ACD ACD ACD
g RMTPP RMTPP RMTPP RMTPP
Q1.05
<
L
g 1.00
i

Methods

[Du et al., KDD "16]

Methods

Methods

Methods

DiffuGreedy

Use the diffusion cascades to directly maximize influence
Assumption: the candidate seeds have started a diffusion in the past
Use greedy, but compute a seed’s influence spread by its diffusion

cascades:

« Choose the diffusion cascade that provides the best marginal gain

using DNI

~N

000

!

AN

"

[Panagopoulos et al., Complex Networks ‘18] 92

DiffuGreedy

« Train-test split of the cascades based on time of the initial post

« Simpler (but wrong) evaluations:
— Sum of seeds’ average test
cascade size

— Sum of seed’s follows, mentions
or retweets Ny " | Ng

« Number of distinct nodes influenced

NC NC

- o

{A:H}< {A:)}

[Panagopoulos et al., Complex Networks ‘18] 93

Learning Influence for IM

* Influencers create or copy more?
 Rank initiators in the test set based on success metrics.

» Successful influencers are more prone to start than participate in train
cascades

« Derive only the context of the cascade initiator. mparticipated ™ Started

50000

o Utilize their cascades and

inf2vec to learn influence and 400001
susceptibility embeddings
between them and the rest of the 000,
network
20000+
« Use these embeddings to
perform influence maximization g0, . ' L

High High High Mid Mid Mid Low Low Low
DNI No Size DNI No Size DNI No Size

o

[Panagopoulos et al., ICWSM 20] 94

Learning INFluencer Vector (INFECTOR)

« Embed at the same vectors:
» The probability of influencing a node
« The initiator’'s aptitude to create lengthy cascades

« Hidden layer S is updated by both inputs, in an alternating manner
« Sand T form the influence likelihood between nodes
* |S| captures the nodes’ cascade size

Classify influenced node Regress cascade size
Hlddeﬂ Zt,u = SuT + bt Zc,u E SuC + bC
e_(zt,u)
Output Pe(Su) = Pc(Su) = 1/(1 + e~ ()
ZuIEG e_(zt'u,)
2
Loss Ly = y; log(¢.(S,)) Le = (Ve — ¢c(Sw)

[Panagopoulos et al.,, TKDE ‘20] o5

c
O
-
O
LLl
LL
<

Loss

Output Layer
|

Hidden Layer

Input Layer
T B

—> O — O O O <t
\ 7 \ J
A A

& S
\\UW// .\\n 1//
> /f_

b v %
| 1 [1
1 1 1 1
Pz o
Pox PoX
N A PR
1 1 1 C “
P " :
“--.q--h “---ﬁ--h
&

X =
) =

Hooco—~o
v O U © <H

96

[Panagopoulos et al., TKDE ‘20]

Reformulation of the Problem

« Use diffusion probability matrix to compute influence spread:

ot(O1T)]

(O T)

 Difference between influence and diffusion probabilities
« D does not require the existence of an edge in the network

« Advantage: Captures higher order correlations that IM techniques
fail to

 |f vappears in the diffusions of u and z appears in the diffusions of v but
notinu's

[Panagopoulos et al., TKDE ‘20] o7

Reformulation of the Problem

Disadvantage: Too many edges (essentially a fully connected
influence network)

Define an expectation of a candidate’s seed influence spread:

[Oull2
Ay=|N
) { > ez |10yl

Use it to diminish the pool of candidate nodes

For a seed s its influence spread is the total edge weight of the
nodes it influences and is given by

AS
o'(s) = Dsj,
J

[Panagopoulos et al., TKDE ‘20]
98

Influence Maximization with INFECTOR

« Optimize o'(s) in a greedy manner.

« Since there are no higher order paths, remove the node added in
each iteration

Seed| N1 N2 N3 N4 N5 A o’ S N1
S1 0.1 0.3 0.2 0.2 0.2 2 0.5 N2
S2 0.4 0.2 0.2 0.1 0.2 2 0.6
S3 0.5 0.1 0.2 0.2 0 3 0.9 S2 N3

N4
S3 N5

Figure: Step 1: S=[S3]

Seed| N2 N5 A o’ St N2
S1 0.3 0.2 2 0.5 %
S2 | 0.2 0.2 2 0.4 S2 N5

Figure: Step 2: S=[S3,S1]

« The spread is submodular & monotonic -> Use CELF for
optimization

[Panagopoulos et al., TKDE ‘20]
99

IMINFECTOR - Experimental Results

4 IMINFECTOR - Credit Distribution == IMM Inf2vec Simpath Inf2vec K-cores
CELFIE = |MM DB < Simpath DB # AVG Cascade Size
Weibo
250000 2 —
400007 "1 200000 400000 P i
= 20991 150000 { g7 3000001 A
Z % X
0O 200001 1000001 20000057
100001 500001 oA 100000+
0 of 0

[Panagopoulos et al., TKDE ‘20]

2500 5000 7500 10000
Seed Set Size

500 750

1000

100

Time [sec]

IMINFECTOR - Experimental Results

! Preprocessing M Training [l Algorithm

Digg MAG Weibo
300004 . 200000+ 20000+
p0000 1500001 150001
JBIHEN 100000- 10000
100001 & & % o X X
50000 I I 50001 I X X X
ol- = B = =} ojm ¥ =« N W N LN .
R & 3 S R & X R S T TR
®) N O ®) N O ® N S
& & SIS S & & SEITEETHEGLT S SITEET
S & AN S & AN S & AN
N\ Q N 3 N 3

[Panagopoulos et al., TKDE ‘20]
101

Part Ill Summary

« Learning influence
— Data mining and probabilistic perspective
 Diffusion prediction
— Recurrent neural networks
— Point Processes
— Combination
* Influence maximization with learnt parameters
— Improve efficiency and effectiveness using the cascades

102

Outline of the Tutorial

Part |. Introduction

Part Il. Traditional influence maximization
Part Ill. Influence and diffusion learning
Part IV. Learning influence maximization
Part V. Online influence maximization

Part VI. Summary and open problems

103

Part IV. Learning IM

 Learning combinatorial optimization problems

* Learning Influence Maximization
« Graph Neural Networks
* Deep Reinforcement Learning

Learning Combinatorial Optimization

« Can we learn heuristics for combinatorial optimization?
» Use graph representation learning to capture the state of a graph.
» Use reinforcement learning to learn how to make sequential decisions.

@ (ﬁ W 5. Inference on test graph
— :
o g=t0l o,

2. GNN node embeddings

Vi ey

1. Training graphs Greedy action

l = argmax; q(i|S)

4. Train
Reward -1 for each step

@Reinforcement <::| 3. State-action value function
Learning q(i|S)=0,0(6; Xjey hj + 65 h;)

[Dai et al., NeurlPS ‘17] 105

Graph Neural Networks Basics

* Learn how to represent nodes using a weighted combination of
their features and their neighbors’ features

Determine node Propagate and
computation graph transform information

» Mostly used for semi-supervised learning and graph
classification

[Hamilton et al., NeurlPS ‘17]
106

Graph Neural Networks Basics

« Each node aggregates the features of her neighbors using a parameterized
non linear combination, i.e. a neural network

* Train the model to adjust the W,&W, parameters such that the outcome is
optimized

TARGET NODE

« Each layer's node |
representation is
used as input to
the next layer

* The node’s INPUT GRAPH
representation in
the final layer is 1
utilized for the h/+'| WI h/ + W/h/
end task d (|N V)| Z ul+Wihy)
ueN(v)

[Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu] 107

Neural networks

Learn CO with DQL

« Given graph learning embeddings, we learn the greedy sequential algorithm
for the minimum vertex cover problem using Q-learning:

* In every step, choose a node at random or based on the Q function (e-greedy)

* The nodes used up to now are tagged with a 1 in the initial representation h,

» The Q function uses the node embedding and the sum of node embeddings derived from 1
layer to represent the action and the graph state:

Q(N(S), v|W) = Wyo([Ws > hy, Wahy))

ucV

« The policy is greedy and deterministic: always the node with the highest Q-
value is used

« Keep choosing nodes until all edges are covered

« One episode corresponds to solving the problem i.e. repeating steps 1-4 for
one graph

[Dai et al., NeurlPS ‘17]
106

* Learn how to maximize influence through dismantling the network:

« lteratively find the nodes that would decrease the size of the giant connected
component

« This is equivalent to influence maximization in the linear threshold model
[Morone and Makse, Nature 2015]

« Use GraphSage to compute the graph into node and graph
representations.

 In each step, DQN chooses an action, i.e. a node to remove
* The new state is the graph after removing the chosen seed and its edges.
* The reward is the accumulated network connectivity of chosen seed set S

[Fan et al., Nature Machine Intelligence ‘20]
107

/4\ Step 1
' : TACHY RTACRY
AN = e = eim

2| % > 4& | |

% o State Action Reward State Action Reward End

g 1S | 4 I 15 |4 JR :

2 1 {

s [

5 | 1 I > o
(Si2, A2 Bi2t-2ns Si-20n) X (S, A, By, Si.) Le® {(S;, A, Bijun, Sjn} {(Sk: Ax. By san, Sk} !:r'
(Sers At Bivictun Sicvan) he. Y [P, PR, o W ey

(St A, Ry o Sten) il e - = T EEE— 7)
t: Ay Bitons Sten $=< Update{®;, ©,} \ \ Update{@g, O} Update{Og, Op} A
(shl' Al'1' R"le] ' slolvll) , .‘() - ‘l
Experience replay buffer .
A L
A real network

c

o

©

L Start End

a =

Q

«

2

o

Z

©

Q

o

Step 1

[Fan et al., Nature Machine Intelligence ‘20]

108

a CN - crime — node-random-weighted b HDA

1.0 = 0.05
- HDA
~#— RatioCut
£ 09 —4— FINDER
g 08 :
: 2
z g
9 07 g
g O
5 \
2 06 \
w
54— 1 1 .
0 0.05 010 0.15 020 025 0.30 20 40 60 80
Fraction of key players’ costs Cost of the key players
e ; ; f MinS
ND - crime - node-random-weighted inSum
1.0 0.05 4
MinSum
—e— GND
z %97 \ —o— FINDER 0.04 1
k3] N
g 0.8 4 \\ § 0.03-
o £
= \? g
3 07 \ & 002
- \
he) |
: L
06 ~ 0.01
05 4 0

0 005 0.10 0.15 020 025 0.30
Fraction of key players’ costs

Cost of the key players

[Fan et al., Nature Machine Intelligence ‘20]

Proportion

Proportion

RatioCut
0.05

0.04

0.03

0.02

0.01

20 40 60 80 100
Cost of the key players

0.05
0.04
0.03
0.02

0.01

20 40 60 80 100
Cost of the key players

Proportion

Proportion

FINDER .
0.05 1

0.04 1+) e
0.03 L Tt
0.02 PR RN
0.01 L
0 : ',)
60 80 100
Cost of the key players
FINDER |

0.05

0.04

0.03

0.02

0.01

Cost of the key players

Part IV Summary

« Learning heuristics for combinatorial optimization
— @Graph and node embedding for encoding
— Q learning for decoding
— Used for minimum vertex cover, maximum cut etc.

« Learn influence maximization
— Optimize for the network dismantling process

110

Outline of the Tutorial

Part |. Introduction

Part Il. Traditional influence maximization
Part Ill. Influence and diffusion learning
Part IV. Learning influence maximization
Part V. Online influence maximization

Part VI. Summary and open problems

121

Part IV. Online Influence
Maximization

Repetitive Campaigns
Multi-armed bandits with edge feedback

Online Influence Maximization

« What if we need to estimate the probabilities of influence without having
previous diffusion cascades?

« Learn while generating data

« Perform multiple rounds of IM. Use the influence spread in each round to
estimate the network probabilities

« Given a budget of N trials with k activated nodes, find the seed set of size
n that maximizes the influence spread throughout all trials

« Exploitation vs. Exploration:
« Maximize the influence spread of the algorithm in each round
* Inthe same time, estimate the influence probabilities in the edges

[Lei et al., KDD ‘15] 112

Online Influence Maximization

« Assign to each edge a Beta distribution

* Run an IM algorithm on the graph using the current edge probabilities
* Receive a feedback based on the influence spread estimated

« Update the edge probabilities

e v N\ 4 N\
Uncertain Influence Graph Choose Seeds Real World
n PDF :
(1) X / (Heuristic) seed () i
\’/Vx\‘ . /| Nodes
\ ~ follow follow
s ~ 4 N O
(2 4) Explore-Exploit (EE W m
follow _ follow §
Ve Feedback ’T—]/ E
3 :
WY

-) : V\ |
E = Update Graph ”/ N

Selection Phase

Action Phase

[Lei et al.,, KDD ‘15] 113

Online Influence Maximization

« Assign a beta distributions in each edge e:

Qe . 1 Aebe
* Ue = O = \/

Aetbe’ Ap+be \| Aetbe+1

* Pe = U t+ B0,

« B=0 in exploitation, 6=1 exploration to increase the variance

« Local update: Increment a, when the edge activates and b, when
It does not

« A B used in a successful round, should be more likely to be
reused in the future
« Learn 6 using exponentiated gradient [Cesa-Bianchi et al. 2006]

[Lei et al.,, KDD ‘15] 114

Online Influence Maximization

>

=

S

S
T

2,000

Influence Spread

1,000

I 6,000 F r r
o
<
g 4,000
w
(D]
2
i
= 2,000 1
g
10 20 30 40 50 10 20 30 40 50
Trial (NETPHY, k =5) Trial (NETPHY, k = 10)
—E— Exploit —A— £-greedy —‘— CB

[Lei et al.,, KDD ‘15]

115

Combinatorial Multi-Armed Bandits

« Each node is an arm in a multi-armed bandit
« M arms with one reward each
« Pullarms in T rounds and receive reward
 Arm pull is binary, hence MLB is suitable for the task

« Begin with uniform priors and choose seeds at each step

« Minimize the difference between choosing the best arm and
the chosen algorithm i.e. the regret R

t t

Ry = E[Y_ R*()] - E[Y_ R()]
=1

i=1

[Cautis et al., Tutorial KDD *19] 16

Multi-Armed Bandits for IM

Arms are the edges and have an unknown expectation

* In each round, a super-arm consisting of a subset of the earms S <
2¢ is selected outgoing from at most k nodes

« QOracle: Use the greedy using the current probabilities in each step to
find the best set of nodes

« The diffusion is run and the outcomes of all edges is revealed.

« The reward of a super-arm depends on the expected reward of all
arms and the arms in S

[Chen et al.,, JIMLR ‘16] [Cautis et al., Tutorial KDD "19]
117

Multi-Armed Bandits for IM

ALGORITHM 3: - CUCB

Input: Arms [m], Oracle algorithm

1:

2:

LON SO AW

Maintain T; — total number of times arm i has been played, the estimated
mean [i;

For each arm /, play an arbitrary super-arm S € S such that i € S and
update T; and [i;

t< m
while true do

t—t+1

Set each f1; = fi; + %

S = Oracle(ji1, ..., jim)

Play S and update each T; and /i;
end while

[Chen et al.,, JIMLR ‘16] [Cautis et al., Tutorial KDD "19]
118

Part V Summary

« Influence maximization in multiple rounds

« Learn the influence parameters while finding the best seeds
— Observe in each round which edges are activated by the seed set

* An upper confidence bound on edge probabilities
 MAB with edge-based feedback

« Left out semi-bandit feedback [Wen et al NeurlPS 2017] and
model-independent online IM [Vaswani et al ICML 2017]

119

Outline of the Tutorial

Part |. Introduction

Part Il. Traditional influence maximization
Part Ill. Influence and diffusion learning
Part IV. Learning influence maximization
Part V. Online influence maximization

Part VI. Summary and open challenges

120

Part V. Summary

e QOverview
« Research directions
« List of references

Algorithmic tools
and
Machine Learning models
(0

runderstand A

maximize
_ predict Y

influence spreading
I
social and information networks

125

Open Research Challenges

« Topic-aware IM using information-rich cascades
— Content, user profiles, locations, time

« Online and adaptive IM

« Learn IM for the independent cascade model

 Use influence for efficient/scalable GNNs

« Use IM to find nodes for adversarial attacks

126

Thank You! Questions?

George Panagopoulos

Ecole Polytechnique, France
george.panagopoulos@polytechnique.edu

https://geopanag.github.io

Fragkiskos D. Malliaros
CentraleSupélec, Inria, Paris-Saclay University
fragkiskos.malliaros@centralesupelec.fr

http://fragkiskos.me

Supported by:

Tutorial material at: http://fragkiskos.me/projects/influence_learning_tutorial/

127

References

Search or jump to quests Issues Marketplace Explore

H geopanag / awesome-influence-maximization-papers

<> Code () Issues i1 Pull requests () Actions [Projects

¥ master ~ ¥ 1branch

@ geopanag -

[% im.PNG

[% readme.md

readme.md

10 wiki

© 0 tags

@) Security

|~ Insights

Go to file Add file ~

a35bic2 on 18 Jan O 77 commits

2 years ago

4 months ago

Influence Maximization and Learning papers

=% awesome

® Watch v 4 Y7 Star 56 % Fork

About

No description, website, or topics
provided.

[Readme

Releases

No releases published

Packages

No packages published

https://github.com/geopanag/awesome-influence-maximization-papers

128

18

