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Abstract. Given a large social graph, what can we say about its robustness? Broadly
speaking, the property of robustness is crucial in real graphs, since it is related to
the structural behavior of graphs to retain their connectivity properties after losing a
portion of their edges/nodes. Can we estimate a robustness index for a graph quickly?
Additionally, if the graph evolves over time, how this property changes?

In this work, we are trying to answer the above questions studying the expansion
properties of large social graphs. First, we present a measure which characterizes the
robustness properties of a graph, and also serves as global measure of the community
structure (or lack thereof). We show how to compute this measure efficiently by ex-
ploiting the special spectral properties of real-world networks. We apply our method on
several diverse real networks with millions of nodes, and we observe interesting prop-
erties for both static and time evolving social graphs. As an application example, we
show how to spot outliers and anomalies in graphs over time. Finally, we examine how
graph generating models that mimic several properties of real-world graphs, behave in
terms of robustness dynamics.

Keywords: Network Robustness; Expansion Properties; Temporal Evolution; Graph
Generating Models; Social Network Analysis; Graph Mining

1. Introduction

In recent years, the study of social networks and graphs in general, has re-
ceived great attention from the research community. This mainly occurs due
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to the strong modeling capabilities that graph structures show; a large number
of datasets arising from a plethora of diverse disciplines can be naturally rep-
resented as graphs. Characteristic examples are technological and information
networks (e.g., the Web, the Internet, e-mail exchange networks), collaboration
(e.g., co-authorship) and citation networks, as well as social networks from on-
line social networking and social media applications, like Facebook and Youtube
(Newman, 2003). A large amount of research work has been devoted to under-
stand the structure, the organization and the evolution of these networks, with
many interesting results (Chakrabarti and Faloutsos, 2012).

A cornerstone property that is related to the structure of networks, is the
one of robustness. Broadly speaking, a graph is characterized as robust, if it is
capable to retain its structure and its connectivity properties after the loss of a
portion of its nodes and edges. The problem of robustness assessment is one of the
most well-studied in the area of network science, with many contributions from
several scientific communities, including those of statistical physics and computer
science (Cohen and Havlin, 2010). In the seminal paper by Albert, Jeong and
Barabdsi (Albert et al, 2000), the robustness of real graphs was studied through
a process of removing nodes and examining how some structural properties of
the graph (e.g., diameter, size of largest connected component) are affected.
The main observation was that the property of robustness is closely related
to the degree of the removed nodes; real graphs — that present a heavy-tailed
degree distribution (Faloutsos et al, 1999) — tend to be highly resilient under the
removal of randomly selected nodes, while they tend to be extremely vulnerable
under “targeted attacks” that focus on nodes with high degree. To conclude, the
main focus of previous works was on studying graph robustness mostly based on
how the removal of nodes with specific characteristics (e.g., high degree), affects
structural properties of the graph.

In this paper, we argue that an important graph characteristic that plays
a crucial role on the robustness, is the existence of communities. That is, the
property of robustness in real-world graphs is closely related to the notion of
community structure. For example, consider a network with good community
structure (Newman, 2006); this means that the network is organized based on
a modular architecture, presenting well-defined clusters (i.e., communities) with
large intra-cluster and small inter-cluster edge density. In other words, graphs
with inherent community structure have a large number of edges between nodes
of the same cluster, while relatively small number of edges across different clus-
ters. We expect that the robustness of these types of networks will be poor,
since they can be easily become disconnected with the removal of the edges
which connect different clusters.

How can we do the robustness estimation quickly without performing a node/
edge removal procedure and measuring how the connectivity is affected? In other
words, is there a robustness index, which can be computed fast enough even for
large scale graphs with millions of nodes and edges? Moreover, if the network
evolves over time with the addition/deletion of nodes/edges, what can we say
about its robustness, and as an extension, about its community structure? Is
there a common pattern in social graphs that govern the time evolution of these
properties?

In this work, we tackle the problem of estimating the robustness properties
of a graph quickly, providing simultaneously information about its community
structure. In order to do this, we borrow concepts from the theory of expander
graphs (Hoory et al, 2006), and we study the expansion properties of several
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real-world time-evolving social graphs. The main contributions of this work can
be summarized as follows:

— Nowel robustness measure: We propose to use the natural measure of expan-
sion, in order to capture the robustness and the community structure of social
graphs into a single number. We present how to efficiently and effectively
compute this measure, exploiting the special spectral properties of real-worlds
graphs.

— Structural patterns of real graphs: Applying the proposed method to several
large static social graphs, we observe that almost all these networks tend to
be extremely robust, showing good expansion properties. These findings are
in accordance with previous studies about the quality of communities in large
networks (Leskovec et al, 2009).

— Patterns of time-evolving graphs: We study how the robustness property of
social graphs changes over time, examining the fragility evolution of real, time-
evolving graphs. We observe a common pattern in the studied social graphs,
as well as interesting connections with the so-called gelling-point (McGlohon
et al, 2008). This pattern can be used to shed more light on the structural
differences between different scale graphs.

— Anomaly detection: We show how to spot outliers and detect anomalies in
graphs that evolve over time, examining the change of the robustness proper-
ties of the graph.

— Robustness properties of graph generating models: We study the robustness of
several graph generating models and their ability to reproduce the observed
patterns in static and time-evolving graphs.

The rest of the paper is organized as follows: Section 2 surveys the related
work and Section 3 gives the necessary preliminary background. In Section 4 the
proposed method is described. Sections 5 and 6 present the experimental results
and our observations for static and time-evolving graphs respectively. In Section
7 the robustness properties of several graph generation models are examined.
Some concluding remarks are presented in Section 8, and finally, the Appendix
provides theoretical details.

2. Related Work

In this section we review the related work, which can be placed in the follow-
ing main categories: graph structure analysis, graph robustness, spectral graph
analysis and applications.

Graph Structure Analysis. There is a vast literature on methods for study-
ing the structure of complex networks (Newman and Park, 2003; Kumar et
al, 2006; Mislove, 2007; Leskovec et al, 2009; Newman, 2003). The key step for
many of these approaches is the finding of patterns and laws that the graphs obey.
Studying static snapshots of graphs has led to the discovery of interesting prop-
erties such as the power law degree distribution (Faloutsos et al, 1999), the small
diameter (Albert et al, 1999) and the triangle power law (Tsourakakis, 2008).
Furthermore, examining time-evolving graphs they have been observed several
patterns such as the shrinking diameter, the densification power law (Leskovec
et al, 2005; Leskovec et al, 2007) and the gelling point (McGlohon et al, 2008).
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As we will present later, some of these properties are closely related to the no-
tion of robustness that is the focus of the current work. For a nice survey one
can consult the recent work by Chakrabarti and Faloutsos (Chakrabarti and
Faloutsos, 2012).

Another well-known approach for exploring the structure of real graphs is
the one of community detection (or clustering) (Fortunato, 2010; Malliaros and
Vazirgiannis, 2013). Communities correspond to groups of nodes that tend to
be similar among each other; the notion of similarity is typically expressed by
the number of edges between the nodes of the same community, compared to
the density of edges across different communities. As we will present later, our
robustness estimation technique is closely related to the community structure
property of real graphs.

Robustness Assessment in Graphs. A large number of studies has been de-
voted to understand and assess the robustness properties of real graphs (Cohen
and Havlin, 2010). In the seminal paper by Albert et al. (Albert et al, 2000),
the focus was on how scale-free networks (i.e., network that follow a heavy-tailed
degree distribution) operate under random and targeted degree-based node re-
movals. In order to assess the network robustness, one can examine how crucial
structural characteristics of the graph (such as the diameter and the size of the
largest connected component) behave under node removals. The main observa-
tion was that real graphs tend to be extremely robust under random failures,
but vulnerable in attacks to high degree nodes. The goal of our work is slightly
different; instead of performing nodes/edges removal for robustness assessment,
we propose an estimation of a robustness index for a graph, based on the graph
theoretic property of expansion. As we will see later, this assessment is closely
related to the existence of well-defined communities within the graph. Very close
to our approach is the method proposed in (Estrada, 2006); however the focus
was mainly in small scale static networks, while we are interested in large real
networks, as well as in the parameter of time evolution.

Spectral Graph Analysis. Analyzing graphs using spectral techniques has a
long history (Chung, 1997). The main idea behind these approaches is to con-
sider information about the spectrum of a matrix representation of the graph
(mainly, the adjacency matrix or the Laplacian). More recent related works
include spectral algorithms for community detection (Newman, 2006; Fortu-
nato, 2010; Malliaros and Vazirgiannis, 2013), node centrality estimation (e.g.,
the PageRank algorithm (Page et al, 1999)) and spectral counting of triangles in
large graphs (Tsourakakis, 2008; Tsourakakis, 2011). As we will present shortly,
the proposed method can be considered as a spectral robustness estimation
method, since it relies heavily on the spectrum of the adjacency matrix of a
graph.

Applications. There are plenty of applications that involve the study of graphs.
Generating realistic graphs (Chakrabarti and Faloutsos, 2012) is such an appli-
cation, where the generators should satisfy the observed properties. As we will
present later, in the context of this work we also examine how well-known graph
generators behave in terms of robustness dynamics and if they can mimic the
observed properties. One other application which has attracted much attention
recently is the detection of anomalies and outliers (Chandola et al, 2009; Akoglu
et al, 2010). Later, we will see how to utilize the observed robustness properties
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Table 1. Symbols and definitions.

Symbol Definition

G Graph representation of datasets

vV, E Set of nodes and edges for graph G

V], |E| Number of nodes and edges

A Adjacency matrix of a graph

Asj Entry in matrix A

i i-th largest eigenvalue

Uij i-th component of j-th eigenvector

SC(i) Subgraph centrality of node 7

NSC(i) Normalized subgraph centrality of node ¢
Tk Generalized robustness index

of real graphs in order to detect temporal anomalies in social graphs. Other
problem domains are searching in networks (Maiya and Berger-Wolf, 2010),
graph compression and summarization (Maserrat and Pei, 2010; Toivonen et
al, 2011; Lefevre and Terzi, 2010), graph clustering (Satuluri and Parthasarathy,
2009) and information-influence propagation in social networks (Mathioudakis
et al, 2011; Anagnostopoulos et al, 2011).

3. Preliminaries and Background

In this section we present the necessary background and some preliminaries re-
lated to our approach for robustness estimation. Initially, we briefly discuss about
the notion of expander graphs and expansion properties which form the basis of
our approach and then we describe their relationship to the robustness and the
community structure of a graph. Table 1 gives a list of used symbols with their
definition.

Expansion

Informally, a graph is characterized as a good expander if it is simultaneously
sparse and highly connected (Hoory et al, 2006). More precisely, given an undi-
rected graph G = (V, E), the expansion of any subset of nodes S C V, with
size at most |—‘2/‘, is defined as the number of its neighborhood nodes (i.e., those
nodes who have one endpoint inside S and the other outside) over the size of

the subset S. That is, if N(S) are the neighborhood nodes of S, the expansion

factor of the set S is defined as IJ\TgS‘)I
graph is the minimum quantity over all possible subsets S. That way, a graph is
considered to have good expansion properties if every subset of nodes has good

expansion (i.e., many neighbors).

, and the expansion factor of the whole

Expansion, Robustness and Community Structure

Studying the expansion properties of a graph can offer crucial insights about
its structure. In particular, the property of expansion can act as a natural mea-
sure of the graph’s robustness since it can inform us about the presence or not
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of edges which can operate as bottlenecks inside the network. Good expansion
properties imply high robustness, since any subset of nodes in the graph will have
a relatively large neighborhood. On the other hand, poor expansibility reflects
exactly the opposite behavior. For any subset of nodes it is impossible to satisfy
the large neighborhood constraint and hence, such types of graphs are not robust
enough, since they can be easily separated into disconnected subgraphs with the
elimination of a small number of edges which connect the different subsets. If
we think these subsets as cuts in a graph, the existence of good expansibility
requires cuts with relatively large size (i.e., large number of edges crossing the
cut), and thus poor modularity and community structure (Newman, 2006).

From the discussion until now, it becomes clear that the notion of expansion is
closely related to the robustness as well as to the community structure properties
of a graph (note that, the expansion has been used in previous works as a quality
measure for community detection and graph partitioning algorithms (Fortunato,
2010)). As we will present shortly, our approach for fast robustness estimation is
built upon the above relationship; we study the robustness of a graph examining
the expansion properties, providing also insights about the community structure
(in other words, the property of expansion is utilized as the connecting link
between robustness and community structure).

Computing the expansion factor of a graph is computationally difficult prob-
lem (Mohar, 1989). Thanks to a very well known result from the field of spectral
graph theory, the expansion factor of a graph can be approximated using the
spectrum of the adjacency matrix A of the graph (Chung, 1997). More precisely,
through the Alon-Milman (or Cheeger) inequality, the expansion of a graph is
closely related to the spectral gap A1 — Ao, i.e., the difference between the largest
and the second largest eigenvalues of the adjacency matrix A. In fact, this con-
stitutes a simple way for estimating the robustness of a graph: compute the
spectral gap and if this is large, the graph will show good robustness, while in
the opposite case the robustness will be low. However, it is not clear how large
the spectral gap of a graph should be in order to characterize it as robust enough.
In other words, the spectral gap alone cannot provide theoretical guarantees for
the expansion (and therefore for the robustness) of the real-world graphs that
we are interested in (mainly graphs with heavy-tailed degree distribution). In
the related literature, there have been presented some bounds for the value of
spectral gap, but they mostly apply to graphs with specific properties, such as
k-regular graphs (i.e., all nodes have the same degree k) (Hoory et al, 2006);
however, these types of graphs and respectively the bounds, do not apply on our
case.

In (Estrada, 2006) the author suggested an elegant method for estimating the
robustness of a graph, combining the spectral gap with the measure of subgraph
centrality (Estrada and Rodriguez-Veldzquez, 2005). Generally, the subgraph
centrality of a node is determined based on the number of closed walks (with
odd length in order to avoid cycles in an acyclic graph) that the node participates,
and it can be obtained from the spectrum of the adjacency matrix A as

SC(i) = Zufj sinh(A;), Vi€ V. (1)
j=1

If the graph has good expansion properties (and thus high robustness), then
due to the large spectral gap A1 > Ao, we expect that in SC(i), Vi € V of
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Eq. (1), only the first term of the summation (j = 1, i.e., u? sinh(\;)) will
account for the subgraph centrality (the contribution of the terms for j =
2,...,|V] will be negligible compared to that of j = 1 due to the effect of
the sinh(-) function). Hence, measuring the deviation from this behavior, we
will be able to detect the existence (or lack thereof) of high robustness prop-
erties in a graph. This deviation can be summarized in the measure £(G) =

2
\/I‘lf Ellzll {log(uil) — (logH + %log(SC’(i)))} , where H = sinh™Y/2(\;) (see
Appendix for full justification) (Estrada, 2006).

However, the basic shortcoming of the above measure is that it is not scalable
to large graphs, since it requires the computation of all the eigenvalues and their
corresponding eigenvectors of the adjacency matrix A. Moreover, it cannot be
applied directly to bipartite graphs since these graphs do not contain odd length
closed walks (See Appendix for more details).

4. Proposed Robustness Measure

While the measure presented in the previous section naturally captures the no-
tion of robustness in a graph, it requires the computation of all eigenvalue -
eigenvector pairs (\;,u;), Vi € V, of the adjacency matrix A. This becomes
a computational bottleneck for large graphs with millions of nodes and edges,
making the measure inefficient and practically not feasible for large scale graphs.

To overcome this problem, in what follows we present our approach for the
efficient and simultaneously accurate computation of a robustness index. Our
proposal consists of a normalized version of the subgraph centrality (Eq. (1))
along with the generalized robustness index 7. The basic idea of our approach is
to compute a low-rank eigendecomposition of the adjacency matrix A, combining
it with the special spectral properties of real-world graphs.

4.1. Generalized Robustness Index ry,

Here we present the proposed generalized robustness measure rj, which can be
used as a fast and scalable graph’s robustness index. The motivating question
behind this measure is how can we efficiently approximate the subgraph central-
ity of Eq. (1) for every node in the graph, providing a scalable, expansion-based
robustness estimation method for large graphs, while simultaneously keeping the
accuracy high.

The basic idea behind our approach comes from two important observations
related to the spectrum of the adjacency matrix of real-world graphs:

(i) The absolute values of the first eigenvalues follow a power-law distribution
(Faloutsos et al, 1999).
(ii) Except from the first few eigenvalues, the remaining eigenvalues are almost

symmetric around zero, meaning that their signs tend to alternate (Tsourakakis,
2008).

Figure 1 presents the spectrum of a real-world graph (WIKI-VOTE). It shows
the eigenvalues of the adjacency matrix for this graph versus their rank. We can
easily observe that the first few eigenvalues are much larger than the rest and
moreover the bulk of the eigenvalues is almost symmetric around zero.
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Fig. 1. Skewed spectrum of a real-world network (WIKI-VOTE). Observe that (i) there exist a
few large eigenvalues, and (ii) most of the eigenvalues are almost symmetric around zero.

Based on the above two points points along with the fact that the sinh(:)
function, which is used to compute the subgraph centrality, is an odd function
(i.e., sinh(—z) = —sinh(x))!, we can approximate the subgraph centrality of
Eq. (1) using only the first top eigenvalues and their corresponding eigenvectors.
In other words, the contribution of most of the eigenvalues to the subgraph
centrality is negligible, compared to that of the first few eigenvalues, due to
the effect of the sinh(-) function (the contribution of an eigenvalue is roughly
canceled out by the contribution of its almost symmetric eigenvalue).

We can now define the normalized subgraph centrality of each node in the
graph as

k
NSCy(i) = uZ;sinh();), Vi€ V, (2)
j=1

where k is the number of the eigenvalues that will contribute to the approxima-
tion of the subgraph centrality, and generally k < |V| for real-world graphs. In
other words, k can be considered as the desired low-rank approximation of the ad-
jacency matrix A, and as we will present in the following section, for large graphs
k can be extremely small to achieve almost excellent accuracy. We stress out here
that the applicability of the proposed approximation of the subgraph centrality
is not similar to other low-rank matrix approximation (that retain the top-k
largest eigenpairs) applications, like the ones used in other fields, such us Text
Mining and Information Retrieval (e.g., Latent Semantic Indexing (Baeza-Yates
and Ribeiro-Neto, 1999)). In our case, the goal is to achieve a low-rank approxi-
mation of the adjacency matrix with respect to the subgraph centrality function of
Eq. (1). That is, the two previously described properties of real-world graphs can

1 This property simply means that the sinh(-) function retains the signs of the eigenvalues.
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be utilized in our approximation, only due to the specific mathematical property
(odd function) of the sinh(-) function.

Based on the normalized subgraph centrality NSC} of each node i € V, we
can now define the proposed robustness index of a graph as

\V\ 1/2
e = (; g {tog(war) — (Tog(sinh™/2(\1)) + 3 log(NSCL())) }2) . 3)

Smaller r; implies better robustness, since as we described in the previous sec-
tion, for a robust enough graph only the first eigenpair will account for the
subgraph centrality. This behavior can be visualized using the discrepancy plot

(e.g., Fig. 2 (d) or (e)).

Definition 4.1 (Discrepancy Plot). The log-log plot of the principal eigen-
vector vs. the normalized subgraph centrality will show a linear correlation for
graphs with high robustness.

Large deviation from the linear correlation in the discrepancy plot, implies ab-
sence of robustness. However, as we will see in the following section, most of the
real-world social graphs that we studied present this linear correlation in their
discrepancy plots (as well as they exhibit a very small 7 index), and therefore
they tend to be extremely robust.

Let us try now to give more insights in the discrepancy plot providing a dif-
ferent viewpoint. Each dot in the discrepancy plot (Fig. 2 (d) or (e)) corresponds
to the behavior of each individual node in the graph and shows how the node
affects the robustness of the whole graph. Broadly speaking, the normalized sub-
graph centrality value of a node provides information about how well connected
(clustered) is the node locally within its neighborhood. On the other hand, each
component of the principal eigenvector captures the global connectivity of the
corresponding node in the graph. Therefore, the existence (or absence) of corre-
lations between local and global nodes’ connectivity behavior, provides a good
estimator for the robustness of the whole graph.

The 7y, index can be considered as a generalization of £(G) (see Section 3),
where r, = £(G) if k = |V|. However, the main advantage of the r; measure is
that it is scalable and it can be computed efficiently for large graphs. Moreover,
the parameter & (i.e., the desirable low rank approximation) allows us to adjust
the “trade-off” between the accuracy in the computation of the robustness and
the required time. As we will present in the following section, for large graphs
with millions of nodes it is enough to compute only very few of the eigenvalues
and their corresponding eigenvectors to achieve almost excellent accuracy (in
some cases only the first eigenvalue is adequate). The most important thing is
that the r, measure operates perfectly as a robustness index and it can be used
to summarize both the robustness and the community structure properties of a
graph in a single number.

4.1.1. Computational Issues

Here we discuss more technical issues related to the computation of the proposed
rt index, including time complexity and convergence in real-world graphs. As we
have already mentioned, the computation of the r; index is reduced to a symmet-
ric eigendecomposition problem. More precisely, due to the sparsity of the adja-



10 F.D. Malliaros et al

Algorithm 1 Robustness Index 7,

: function r_k = Robustness_Index (A, k)
. % Input: Adjacency matrix A, Number of eigenpairs to be used k

1
2
3: % Output: The robustness index r_k

4: opts.issym = 1; opts.isreal = 1;

5. [u, lambda] = eigs(A, k, ‘LM’, opts);

6: lambda = diag(lambda);

7. SC = (u."2) * sinh(lambda);

8 d = logl0(u(:1)) - 0.5 * 1og10(SC) + 0.5 * 1log10(sinh(lambda(1)));
9: rk = (sum(d."2) / length(A))"1/2;

10: end

cency matrix of real-world graphs, the computation of the top-k eigenpairs can
be efficiently done using the Lanczos method for solving large, sparse, symmetric
eigendecomposition problems. Lanczos method performs a tridiagonalization of
the adjacency matrix A, with the property that the extremal (largest or small-
est) eigenvalues of the produced tridiagonal matrices approximate the extremal
eigenvalues of A. Therefore, Lanczos method is suitable in the case of comput-
ing the rp index, where only the very few largest eigenvalues of A are enough.
Furthermore, at each iteration of the Lanczos method, only matrix-vector mul-
tiplications are performed; hence, during the execution no intermediate matrices
are produced, reducing space requirements. For a more detailed description of
the Lanczos method, one can consult Ref. (Golub and Van Loan, 1996).

Another important issue concerns the convergence of Lanczos method when
applied to the adjacency matrix of real graphs. As noted in (Tsourakakis, 2011),
due to the skewed eigenvalue distribution of real-world networks (e.g., see Fig.
1), the convergence of Lanczos solver to the top largest eigenvalues is fast. Thus,
since a relatively small number of the largest eigenpairs is adequate for computing
the ri index, this can be achieved efficiently as well.

Finally, we stress out that the proposed rj index can be computed very easily
in any programming environment that provides routines for the Lanczos eigen-
value decomposition method. For demonstration purposes, Algorithm 1 provides
a MATLAB implementation of the proposed r index.

4.1.2. Robustness Estimation in Bipartite Graphs

Additionally, we show how we can efficiently compute the r; index for bipar-
tite graphs. A graph G = (V, E) is called bipartite if the node set V' can be
partitioned into two disjoint sets V; and Vs, where V = V; U V5, such that for
each edge (i,j) € F = i € V5 and j € Va. Several real-world datasets can
be represented as bipartite graphs. However, the robustness index r; cannot be
applied directly to this type of graphs. The proposed optimization procedure
for approximating the normalized subgraph centrality of Eq. (1), capitalizes on
the combination of the skewed and almost symmetric spectrum of unipartite
real-world graphs and the property that the sinh(-) function is odd. As we have
already mentioned, this function corresponds to the closed paths of odd length
and the normalized subgraph centrality is computed according to them. How-
ever, bipartite graphs do not contain odd length closed paths; therefore, the
normalized subgraph centrality should be considered based on the closed paths
of even length, by replacing the sinh(-) function with the cosh(-) (Estrada and
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Rodriguez-Veldzquez, 2005). The problem that arises is that cosh(-) is an even
function (i.e., cosh(—z) = cosh(z)), which means that it does not retain the
signs of the eigenvalues. A second problem is related to the properties of the
spectrum of bipartite graphs; the eigenvalues exhibit the pairing property, i.e.,
AV)—ig1 = Xiy @ = 1,2,...,[V] (fully symmetric around zero). Thus, it is not
possible to approximate the subgraph centrality in bipartite graphs keeping only
the top largest eigenvalues.

Our approach for robustness estimation performs a simple transformation of
the bipartite graph in such a way that (i) the basic topological properties of the
graph are retained and (ii) the subgraph centrality can be computed efficiently.
As a running example, let us consider the IMDB? movie-actor bipartite graph
(actors playing in movies — one partition corresponds to actors and the other to
movies). This graph can be represented using the biadjacency matrix B, where
the rows correspond to movies while the columns to actors. A natural way to
compute the robustness of this graph is to consider the actor-actor graph or the
movie-movie graph (actually these graphs capture the similarities between actors
and movies respectively). In other words, the bipartite graph is converted into
an one mode graph, projecting the nodes of one partition to the nodes of the
other.

Proposition 4.1 (NSC}, for bipartite graphs). Let G = (V1, V4, E) be a bi-
partite graph, where |V1| = m and |V2| = n. Assuming that we consider the
partition V; (similar for V3), apply bipartite network projection procedure to

construct the unipartite representation graph G = (Vi, Eg). That is, V(i,w) € E
and (j,w) € E, where i,j € V; and w € V5 of the bipartite graph G, add the

edge (i,7) in the graph G. Then, the normalized subgraph centrality NSCP for

each node i of G, can be computed as NSCP (i) = Z§:1 uz; sinh()\?), where now

A, u correspond to the spectrum of the adjacency matrix of G.

Thus, replacing the NSCy, with NSCP in Eq. (3), we can estimate efficiently
the 7, robustness index of a bipartite graph. In our experimental study we mainly
focus on unipartite graphs, therefore we apply Eq. (3) as is.

4.2. Illustration

In order to better understand how the 7, robustness index operates, it is applied
to two graphs with expected robustness properties. The first one is a random
graph generated by the Erdos-Rényi (ER) model (Erdés and Rényi, 1960) with 50
nodes and probability p = 0.3 (Fig. 2 (a)). The second is Newman’s collaboration
network between 379 researchers in the area of network science (Fig. 2 (b))
(Newman, 2006).

Random graphs are known to have good expansion properties (Hoory et
al, 2006), and thus high robustness. Then, due to the large spectral gap, only
the largest eigenvalue and the corresponding eigenvector will mostly contribute
to the normalized subgraph centrality (Eq. (2)), and the principal eigenvector
will follow a power-law relationship (linear correlation in logarithmic scales) with
the normalized subgraph centrality (see also Appendix). Thus, from Eq. (3), the

2 www.imdb.com
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(a) ER random graph

r =3.5027e-05 r=2.4921
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(d) Discrepancy plot: ER random graph (e) Discrepancy plot: network science graph

Fig. 2. Random vs. real graphs and their discrepancy plots: points on the line correspond to
nodes well represented by the largest “community”, indicating high robustness. ER random
graph ((a), (d)) is robust, while network science graph ((b), (e)) is not, consisting of several
communities.

generalized robustness index r will be extremely small. Figure 2 (d) depicts
this result where it is easy to observe the linear correlation when plotting the
principal eigenvector vs. the normalized subgraph centrality (discrepancy plot).

On the other hand, Newman’s collaboration network presents very strong
community structure, where the nodes form dense modules with sparse connec-
tions between different modules. Hence, this graph in not robust since it can be
easily become disconnected if we simply remove the edges which connect differ-
ent modules. So, we expect an opposite behavior compared to that of the ER
graph. Figure 2 (e) depicts this result where the absence of the above linear
correlation is clear in the discrepancy plot and the rj index is far away from
zero. As we have already discuss, low robustness is expressed by the absence of
correlation between the normalized subgraph centrality (local factor) and the
principal eigenvector (global factor).

Based on this point, in Fig. 2 (e) the node with the largest NSC} and prin-
cipal eigenvector component (green +) corresponds to A.-L. Barabasi. This is
somewhat expected since A.-L. Barabasi is a well known researcher in the area of
network science. Next to him follow other well known researchers (e.g., H. Jeong,
R. Albert) which actually belong to the egonet (Fig. 2 (c)) of A.-L. Barabasi (in
Fig. 2 (c) the green node corresponds to A.-L. Barabasi). On the other hand,
the node with one of the smallest NSC}, and principal eigenvector (yellow * in
Fig. 2 (e)) corresponds to G. Gregoire, which actually has only one co-author in
the dataset (and this co-author has very small neighborhood).
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Table 2. Summary of real-world networks used in this study.

Graph Dataset Nodes Edges
EPINIONS (Richardson et al, 2003) 75,877 405,739
EMAIL-EUALL (Leskovec et al, 2007) 224,832 340,795
SrAsHDOT (Leskovec et al, 2009) 77,360 546,487
WIKI-VOTE (Leskovec et al, 2010 (b)) 7,066 100, 736
FACEBOOK (Viswanath et al, 2009) 63,392 816, 886
Youtuse (Mislove, 2007) 1,134, 890 2,987, 624
CA-ASTRO-PH (Leskovec et al, 2007) 17,903 197,031
CA-GR-QC (Leskovec et al, 2007) 4,158 13,428
CA-HEP-TH (Leskovec et al, 2007) 8,638 24,827
DsLP (DBLP, 2006) 404, 892 1,422,263
CIT-HEP-TH (KDD-Cup, 2004) 26,084 334,091

5. Robustness of Large Static Graphs

In this section, we present detailed experimental results, applying the method
proposed in Sec. 4 to several real-world large social graphs (Table 2). All the
experiments were designed to answer the following questions:

Q1 (Effectiveness and Scalability) How effective and scalable (efficient) is the pro-
posed 7 index?

Q2 (Patterns and Possible Explanations) What can we say about the robustness
of large social graphs? Is there any common pattern that appears in most of
them?

Table 2 presents the real datasets used in this work. In all cases, we consider the
graphs as unweighted and undirected. Furthermore, unless specified otherwise,
we extract the largest connected component and use it as a good representative
of the whole graph. In Sec. 5.4 we perform experiments on the second largest con-
nected component of several real graphs, in order to examine how the robustness
behaves in smaller components.

5.1. Effectiveness and Scalability of r; Robustness Index

Here we measure the performance of r; index both in terms of scalability and
effectiveness. All the experiments were conducted on a DELL server with two
quad core processors and 32 GB RAM, running Linux.

Figure 3 (a) presents the computation time of r, index in the DBLP dataset.
In the experiment we used k = 30 (i.e., the 30 largest eigenpairs) and measured
the running time for different scale graphs (up to 400K nodes and 1,4M edges).
We can observe that the r; index scales linearly with respect to the number of
edges. Moreover, we can see that for the largest graph, the computation time is
less than one minute. This makes the r; index applicable to million node graphs.

Figure 3 (b) plots the rank & of approximation (i.e., the number of computed
eigenpairs) vs. the absolute error |r — 7|, where r is the value of the robustness
index using the whole spectrum of the adjacency matrix, for two graphs. For
the CA-GR-QC graph, we can observe that after k = 4 we achieve a very good
approximation of the robustness index, with absolute error less than 0.06. For the
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Fig. 3. Scalability and Effectiveness of rj index: (a) The computation time is linear with
respect to the number of edges. (b) Absolute error using k =1, ..., 30 for two different graphs.
Observe that a few eigenvalues are enough to achieve an almost excellent approximation.

WIKI-VOTE graph, for £ = 1 and only the first eigenvalue and the corresponding
eigenvector, we attain absolute error which tend to zero (10~1%). However, CA-
GR-QC is a much smaller graph that WIKI-VOTE. As we will see next in this
section, almost all the examined large social graphs tend to be extremely robust
showing a large spectral gap, and in Eq. (2) the first term dominates.

5.2. Observations and Explanations

Figure 4 presents the discrepancy plots for the graphs we examined, along with
the 7y index (for all the experiments we used k = 30). From a first look, it is clear
that almost all of these graphs exhibit high robustness, showing linear correlation
(in log-log scales) between the principal eigenvector and the normalized subgraph
centrality. The r; index for most of them is very close to zero, implying that the
spectral gap of these networks is large and they show good expansion properties.

Observation 1 (High Robustness). Large real-world social graphs exhibit
good expansion properties and thus high robustness.

This observation suggests that the networks expand very well allowing the

selection of arbitrary subsets of nodes with size at most ”2/—', such that for every
set there is a relatively large number of edges with one endpoint inside the set
and the other outside. Therefore, a first outcome is that these social graphs lack
of edges that can act as bottlenecks and therefore, they present high robustness.
From a community structure related point of view, this observation implies that
the nodes inside the networks that we have examined, are not organized based
on a clear modular architecture. It seems that these networks lack of well defined
clusters which can be easily separated from the whole graph.

One interesting question is if these observations for large social graphs are ex-
pected. It is well known that the organization of social networks is based on com-
munities (i.e., subgraphs with high intra-community and low inter-community
edge density) (Newman and Park, 2003). Additionally, previous studies on the
expansion properties of small-scale social graphs showed that almost all of them
exhibit poor expansibility and thus very low robustness (Estrada, 2006).
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On the other hand, our observations suggest an almost opposite behavior.
We consider that this difference is mainly due to the scale of the networks. It
seems that in large scale social graphs it is difficult to find subsets of nodes
which can be easily isolated, leading to high robustness. For example, consider
the co-authorship networks DBLP-1980 and DBLP-2006, in Fig. 4 (j) and (k) re-
spectively. Both of these networks are coming from the same dataset (DBLP), but
they represent different time snapshots of the graph. The DBLP-1980 graph has
about 5K nodes and 9K edges, while the DBLP-2006 graph has 405K nodes and
1,5M edges. Moreover, the first graph is contained into the second. Comparing
their robustness indices, it is clear that the larger network is much more robust
than the smaller one. A similar argument can be used to justify the difference in
robustness properties of the graphs CA-GR-QC and CA-HEP-TH (Fig. 4 (h) and
(i)). This is a first evidence that the robustness of a graph is not a consistent
graph property with respect to the evolution of graphs, but as we will present in
Section 6, the robustness changes over time, showing interesting patterns.

Finally, our findings for static graphs are in accordance with previous studies
related to the quality of the community structure in large networks. In (Leskovec
et al, 2009), the authors observed that the best communities in large networks
correspond to small subgraphs up to 100 nodes, and the quality of a community
(obtained by a measure such as modularity or conductance) decreases while the
size of the community increases.

5.3. The Effect of Core-Periphery Structure

In a recent work, (Leskovec et al, 2009) examined the structure of several large
scale social and information networks and their observation suggests that such
graphs follow a core-periphery structure. That is, graphs are typically considered
that are composed by a sparse core with no well defined structure, along with the
periphery, i.e., small groups of nodes — called whiskers — that are barely connected
to the core via a very small number of edges. Although the core does not have
any clear structure, it has been shown that it is not governed by randomness,
since the number of edges within core is more than the expected one (in case
of random graphs). Furthermore, whiskers present diverse shapes and sizes and
typically, they are organized into layers according to the number of edges used to
be connected to the core. The whisker types with interesting properties are the
1-whiskers, i.e., maximal subgraphs that are connected to the core via a single
edge. Leskovec et al. observed that these subgraphs are responsible for the best
communities in the graph, in the sense that they achieve the best score among
all subgraphs, according to some clustering quality measure (e.g., conductance).

In the experimental results presented previously, we observed that large scale
social graphs tend to be highly robust. An interesting question is how the ro-
bustness is affected by the previously described core-periphery structure. Taking
into consideration that in many real graphs a large portion of their nodes and
edges belong to 1-whiskers (e.g., the 1-whiskers of the YOUTUBE graph include
around 60% of its nodes and 24% of its edges), it is important to examine how
the robustness of the graph is affected if we remove those 1-whisker nodes.

To isolate 1-whisker nodes and keep only the core of the network, we apply
the method proposed in (Leskovec et al, 2009). More precisely, the core should
correspond to the largest bi-connected component of the graph, i.e., to the largest
subgraph in which the removal of a single edge does not affect the connectivity.



Estimating Robustness in Large Social Graphs 17

Table 3. Robustness index rj of the initial graph compared to the one of the graph produced
after removing 1-whisker nodes. The last column shows the fraction of remaining nodes and
edges after removing 1-whiskers.

Graph Tk ri, without 1-whiskers % of Nodes, Edges in Core
EPINIONS 9.1577 x 10~15  4.7012 x 10~15 47.59%, 90.02%
EMAIL-EUALL  1.0607 x 10797 2.4706 x 10—1° 16.06%, 44.86%
SLASHDOT 3.7949 x 1015 8.6715 x 10~1° 61.04%, 97.56%
WIKI-VOTE 2.7299 x 10~15  2.4016 x 10~1° 67.73%, 97.74%
FACEBOOK 5.6394 x 10~11  5.4249 x 10~11 86.19%, 98.91%
YOUTUBE 1.8833 x 10~ 13 4.3108 x 1015 39.83%, 76.82%
CA-ASTRO-PH  1.3500 x 10798  8.8004 x 10~9? 88.97%, 98.45%
CA-GR-QC 0.5302 0.5137 63.76%, 78.12%
CA-HEP-TH 1.007 0.9084 68.28%, 84.69%
DBLP-1980 1.5034 1.1854 17.05%, 51.63%
DBLP-2006 1.7489 x 10~10  1.2739 x 1010 69.67%, 86.68%
Crr-HEP-TH 7.9964 x 10~10  7.1770 x 10—10 93.49%, 99.43%

Therefore, we retain only the largest bi-connected component of each graph and
we compare the r; index of this “reduced” graph to the initial one.

Table 3 shows the results of the rj index for the graphs without 1-whisker
nodes, compared to the r; index of the original graphs. Additionally, the last
column of the table depicts the fraction of nodes within the core after removing 1-
whiskers. Notice that, in many cases, a relatively large portion of nodes and edges
correspond to the whisker subgraphs. As we can observe, in most of the examined
networks the robustness index rj does not change significantly, meaning that
the robustness of the graph is not strongly affected by these barely connected
subgraphs. Moreover, the same behavior occurs in graphs with both high and
low robustness (graphs in Table 3 with low and high rj index respectively). One
should expect that graphs with high robustness (like most of the graphs studied
in this paper) should improve their robustness only a little after the removal of
1-whiskers. This expected behavior could be explained by the fact that whiskers
correspond to sparsely connected subgraphs, that affect the expansion properties
of the graph. On the other hand, it is more expected that graphs with initially
low robustness and high 7 index (e.g., CA-GR-QC, CA-HEP-TH and DBLP-1980
in Table 3), should achieve a greater improvement on their robustness due to the
effect of whiskers (since they are barely connected to the rest of the graph). For
example, in the case of the CA-GR-QC graph in which almost 37% of its nodes
and 22% of its edges belong to whiskers and were removed, the r; index was
improved by a factor of 0.03% which is relatively small. That way, the portion of
the graph that finally belongs to the core is a factor that affects the robustness
index. As we can see from Table 3, in graphs where only a small fraction of nodes
and edges is retained after removing 1-whisker nodes (e.g., EMAIL-EUALL and
YOUTUBE graphs), the robustness is substantially improved.

Additionally, the above behavior can possibly be explained by examining
more carefully the observed core-periphery structure. As the authors in (Leskovec
et al, 2009) note, the core itself has a core-periphery structure; now the periphery
is composed by 2-whisker nodes that are connected via two edges to the core.
Therefore, in most times, the produced graphs have a relatively small improve-
ment on their robustness.
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5.4. Robustness of Largest Connected Components

Most of the related works about the structure of real-world graphs focus on
the Largest Connected Component (also called Giant Connected Component -
GCQ), i.e., the largest connected portion of the graph (e.g., see (Mislove, 2007)).
To some extend, this approach can intuitively provide valuable insights about the
overall structure of graphs; typically, GCCs contain the largest portion of nodes
and edges and therefore they can be used as “good graph representatives” for
the overall structure. However, in order to better examine and fully understand
the properties of large graphs, it would be more suitable if we also study parts of
the graph that do not belong to the GCC, gaining a more complete view of the
underlying structure. In the related literature, only a few works have examined
the structural properties of the next largest connected components (e.g., (Kumar
et al, 2006), (McGlohon et al, 2008)).

The results presented in the previous paragraphs concern the robustness of
the GCC and suggest that most of the examined graphs tend to be highly robust.
Here we study the robustness properties of the non Giant Connected Component
of the graphs and more specifically the second Largest Connected Component
(CC2); we try to examine possible deviations compared to the robustness of
GCC. We performed experiments on four of the datasets presented in Table 2.
Note that, in most cases the CC2 of the graphs tend to have small size (number of
nodes and edges) and therefore we do not report results for extremely small CC2
subgraphs. Figure 5 depicts the discrepancy plots and a schematic representation
of CC2s of the studied graphs.

First of all, the CC2s of the examined graphs follow diverse connection pat-
terns. For example, in the YOUTUBE graph (Fig. 5 (g)), CC2 is mainly formed
by a big star along with a few other nodes and edges. Regarding the robustness,
almost all of the CC2 subgraphs tend to have decreased robustness (higher ry
index) compared to the one of their corresponding GCCs (Fig. 4). This can also
be observed from the discrepancy plots, where there in no clear linear correlation
between the normalized subgraph centrality and the principal eigenvector. Our
observations suggest that the structure of CC2 is governed by different robust-
ness patterns compared to the GCC. It seems that the structure of CC2 is more
close to a modular one, in the sense that it is more easily to isolate group of
nodes by deleting only a few edges (therefore lack of robustness). We consider
that this observation can intuitively be explained by the temporal properties of
the robustness in social graphs. Figure 6 depicts the evolution of the 7y, index over
time (DBLP-2006 graph), for the GCC and the CC2 respectively. As we can see,
in most of the time points CC2 has almost a similar robustness behavior as the
one of GCC, where in some cases (green labeled points) the component with the
best robustness (GCC and CC2) is alternated. The experiments that presented
in Fig. 5 concern snapshots of the CC2 subgraphs at the last time point of their
evolution. As we will see shortly in Section 6, after a specific time point during
the evolution of the graph (regarding the addition/removal of nodes/edges), the
size of the CC2 stops increasing, while on the other hand, GCC absorbs the
largest portion of nodes and edges (this phase transition point is also known
as gelling point — marked with red color in Fig. 6). That way, CC2 and other
smaller connected components constantly contain a relatively small portion of
the whole graph, something that can explain the observed robustness properties
of CC2.

We also note that in the case of the CA-GR-QC graph, the robustness of CC2
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Fig. 6. Evolution of the robustness index of GCC and CC2 (DBLP-2006 graph). Observe that
the robustness of CC2 does not change significantly over time.

is slightly better than the one of GCC (ry = 0.0463 compared to r; = 0.5302).
In this case, the GCC of the graph is not robust at all, but as we can see from
Fig. 5 (a), the CC2 subgraph is comprised of a relatively well-connected set of
nodes.

6. Time Evolving Graphs and Anomaly Detection

In the previous section we observed that most of the studied social graphs tend
to be extremely robust, presenting very low r; index. In this section we focus
on time-evolving social graphs, in the sense that real graphs are not static but
typically change over time with the addition/removal of nodes/edges (Leskovec
et al, 2007). To this direction, we try to answer the following questions:

Q3 (Time Evolution) How the robustness index ry of a graph changes over time?
Q4 (Anomaly Detection) Can we spot anomalies over time using the 7y index?

6.1. Fragility Evolution

As we mentioned earlier, large real-world graphs present high robustness (good
expansion properties) and thus poor community structure. However, a crucial
question which naturally arises for time-evolving graphs, is how these properties
change over time. In order to answer these questions, we study the fragility
evolution of a graph. In other words, for every time point in the datasets (e.g.,
month, year), we form the graph up to the specific time point, and then for each
time snapshot we examine the 7, index. We conduct experiments with the last
two datasets of Table 2. DBLP covers the time period 1960 — 2006 (cumulative
graph snapshots per year) and CIT-HEP-TH expands from February 1993 till
April 2003 (cumulative graph snapshots per month).

Figures 7 (a) and (b) present the fragility evolution for the DBLP and the
CIT-HEP-TH graph respectively. Our general observation which can be confirmed
from both of these graphs is that, at the first time points, while the graphs are
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Fig. 7. Fragility evolution pattern: We can observe that the spike of the r; index aligns with
the diameter’s spike. Moreover, the average clustering coefficient (CC) over time also seems to
be related to the robustness of the graph.

generally in an establishment period, 7y, increases gradually. This means that the
graphs are not robust enough, but it seems that they exhibit good community
structure. However, after a specific time point, r, starts decreasing gradually,
meaning that the graphs tend to be more robust, increasing their expansion
properties but loosing their community structure.

Furthermore, an important point which is related to the change of the rg
index, is the time point that it occurs. We observed that this time point cor-
responds to the so-called gelling point (McGlohon et al, 2008). In other words,
at the time point that the graph’s robustness starts improving, the effective di-
ameter of the graph spikes (Fig. 7 (¢) and (d)) and generally the graph starts
obeying some of the expected rules (such as the densification law (Leskovec et
al, 2007)). This could be explained by the fact that there is close connection
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between the diameter and the robustness (expansibility) of a graph in scale-free
networks (Bollobds and Riordan, 2003).

Observation 2 (Fragility Evolution Pattern). Real graphs obey the fragility
evolution pattern. The spike of the robustness is aligned with the gelling point.

Furthermore, we also observed a close connection of the robustness over time
and the evolution of the average clustering coefficient. The local clustering co-
efficient (CC) (Watts and Strogatz, 1998) of each node in the graph, quantifies
the extend to which its neighbors tend be connected (i.e., to create triangles).
Then, the average clustering coeflicient of the graph is defined as the mean value
over local ones for the nodes of the graph. Watts and Strogatz used the concept
of clustering coefficient to quantify the existence of small-world networks (Watts
and Strogatz, 1998). As we can see from Figures 7 (e) and (f), the time point
that the robustness index r spikes, is also aligned with the spike of the average
clustering coefficient. This can be considered as an evidence that increased aver-
age clustering coefficient can lead to small world graphs with small diameter and
strong robustness (a large fraction of the connected triplets within the network
tend to close triangles).

The fragility evolution pattern can be considered as a natural explanation
for the structural differences (regarding robustness and community structure)
between different scale graphs. This means that we have a more concrete view
of how the robustness (and consequently the community structure properties)
change over time, and how the graph gradually improves its robustness. Finally,
it seems that the ry index is an alternative way for finding the gelling point
(McGlohon et al, 2008) of a graph; more importantly it can be estimated more
efficiently than computing the effective diameter.

6.2. Anomaly Detection

Here we present how the fragility evolution of a graph can be utilized for spot-
ting outliers and detecting anomalies in graphs over time. The idea is to examine
the 7 index over time, trying to identify and track abrupt changes and devi-
ations. Since for all the examined graphs presented previously the evolution of
the r; index is similar, presenting a specific pattern (the fragility evolution pat-
tern, i.e., the 7 increases at the first time points and after the gelling point it
starts decreasing gradually), sudden deviations from this behavior can possibly
correspond to anomalies, and thus the specific time snapshots can be tagged as
outliers.

Figure 8 presents the fragility evolution of the DBLP co-authorship graph (it
is the same as in Fig. 7 (a) but in linear-logarithmic scales). We can observe
that at two specific time points which correspond to 2002 and 2003, the 7 index
presents a strange behavior. More precisely, after 2001 the r; index decreases
sharply and this behavior continues until 2003. After 2003 the robustness of
the graph returns back to its normal behavior (it still continues to decrease but
this happens gradually). These two time points present large deviation from the
“normal” behavior of the graph and thus they can be classified as anomalies.
In other words, it seems that for these two specific years the graph becomes
extremely robust (very low ry index), but after that the robustness decreases
abruptly and the graph acquires better community structure. However, are these
two time graphs (2002 and 2003) really outliers, as the r; index suggests?
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Fig. 8. Fragility evolution of the DBLP graph (lin-log scales). Observe the abrupt behavior
during 2002-2003. These time snapshots correspond to anomalies in the DBLP graph.

Ezxplanation

After 2001 a large number of new publications were introduced to DBLP, which
explains the downward slope of the r; index. These new publications make the
co-authorship graph very robust. Until then the focus of DBLP was mostly on
databases and logic programming. However, after 2002 — 2003 new research fields
became important, and many old conferences and journals from these fields were
added to DBLP, with focus on current publications (not in the past papers of
these fields). These new fields formed new communities in the graph, decreasing
the robustness, which explains the reason why 7y increases after 2003. Thus, the
ri index is capable to capture structural differences in the graphs and it can be
used for anomaly detection in time-evolving graphs3.

7. Robustness Analysis in Graph Generating Models

Having examined the robustness properties of several large scale social graphs,
in this section we focus on investigating this property on graphs that have been
produced by some well-known generating models, and we are trying to answer
the following question:

Q5 (Graph Generating Models) How generators behave in terms of graph robust-
ness? Do they reproduce the observed robustness patterns (on both static and
time-evolving graphs)?

Answering the above questions is a quite important topic due the neces-
sity of designing realistic graph models with properties close to the ones of real
graphs. Then, the graph models can be used in a wide range of applications,
such as benchmarking of graph algorithms, graph sharing (sharing of realistic
but non-sensitive graphs produced by a model) and graph evolution (e.g., how
the Facebook social graph should look like in one year from now?). Furthermore,
a particularly significant point is that graph generators can provide useful in-
sights about the underlying generative process of real-world graphs, towards a
better and more clear understanding of their structure and formation dynamics.

3 Personal communication with Michael Ley and Florian Reitz from DBLP.
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In this work we focus our attention on three well-known and widely used
graph generation modes, namely the Preferential Attachment model (Barabdsi
and Albert, 1999), the Kronecker Graph model (Leskovec et al, 2010 (a)) and
the Forest Fire model (Leskovec et al, 2005), (Leskovec et al, 2007). Although
all these models do not capture exactly the full set of properties of real graphs,
they all produce heavy-tailed degree distributions and are good representatives
of most other models. We also note that we do not perform experiments with
the Erdés-Rényi random graph model (Erdés and Rényi, 1960), as its properties
are far away from those of real graphs (Chakrabarti and Faloutsos, 2012).

Furthermore, we are interested in both a qualitative and quantitative study
of the robustness behavior of graph models. That is, we want to examine to
what extend the models can reproduce qualitatively the observed properties in
general, i.e., the high robustness and the fragility evolution patterns as trends
of real graphs, as well as their ability to capture (fit) the observed rj index of
real graphs. Regarding the last point, a direct comparison between the 7y indices
would not be appropriate due to the nature of the r; index; we argue that by
comparing the order of magnitude of r; we can draw more useful conclusions.

7.1. Preferential Attachment Model

The Preferential Attachment (PA) model was introduced by Barabdsi and Albert
(Barabési and Albert, 1999) to capture the heavy-tailed degree distribution of
real-world graphs. The model operates similar to a rich-gets-richer mechanism,
in the sense that high degree nodes are more probable to increase their degree
during the evolution process. More precisely, the PA model can be described by
two parameters: (i) the number of nodes n in the produced graph and (ii) the
number of edges m created by each new node introduced in the graph. At every
iteration step, a new node is added to the graph. The node forms m edges by
connecting to m already existing nodes preferentially, i.e., each of the m endpoint
nodes is selected with probability proportional to its degree. It has been shown
that the PA network model, among other properties, presents a heavy-tailed
degree distribution. However, as it have been discussed in the related literature,
the PA model is not able to reproduce important temporal properties of real
graphs, namely the densification power law and the shrinking diameter.

Fitting Process. Let us now discuss how can we set the two parameters of the
PA model (n,m) in order to generate graphs with properties (i.e., number of
nodes and edges) similar to those presented in Table 2. The number of nodes n
is set equal to the number of nodes in the original graph |V|. Since each of the
n = |V| nodes in the network creates m edges, the total number of edges would
be |E| = m - |V|. Therefore, parameter m is set to be equal to the density factor
m = [|E|/[V]].

In general, we know that PA graphs are robust in random failures, but tend to
be vulnerable under targeted attacks to high degree nodes (Albert et al, 2000).
Here we examine how the ry robustness index behaves and if the PA model
is capable to reproduce the high robustness (see Section 5) and the fragility
evolution patterns (see Section 6). Table 4 shows a quantitative comparison
between the r; robustness index of the original graph and the one of the artificial
graphs produced by the PA model, following the previously described fitting
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Table 4. Robustness of graphs generated by the Preferential Attachment model. Parameter
m represents the number of connections that each new node creates.

Preferential Attachment

Graph Tk m Tl
EPINIONS 9.1577 x 10~15 5 5.7053 x 10795
EMAIL-EUALL  1.0607 x 1097 2 0.0915
SLASHDOT 3.7949 x 10~15 7 6.7911 x 10797
WIKI-VOTE 2.7299 x 10~15 14  1.7554 x 10~15
FACEBOOK 5.6393 x 10~ 11 13 24337 x 10715
YOUTUBE 1.8833 x 1013 3 0.0642
CA-ASTRO-PH  1.3500 x 10798 11 3.3600 x 10~11
CA-GR-QC 0.5302 3 0.0051
CA-HEP-TH 1.0070 3 0.0070
DBLP-1980 1.5034 2 0.0604
DBLP-2006 1.7489 x 10—10 4 0.0214
Crr-HEP-TH 7.9964 x 10~10 13 1.4641 x 10~1°

process. For every graph we also show the value of parameter m of the PA
model.

Comparing the ry index with that of Fig. 4 (also second column of Table 4),
we can observe that in most cases the PA model fails to reproduce the robustness
properties of the graphs. Although in some cases it seems that the rp index is
close enough to the original one (e.g., in the WIKI-VOTE graph), we consider
that this mainly happens due to the settings of parameter m (i.e., m = %)
That is, the r value of each PA graph, depends heavily on the number of edges
that each incoming node creates, i.e., parameter m of the model.

To provide a more thorough examination of this behavior, we study the ro-
bustness index of PA graphs at different scales and for several values of parame-
ter m. Figure 9 depicts the rj value for PA graphs of various sizes (5K — 350K
nodes), and for a wide range of values for parameter m (m = [2,4,6,8]). We
can observe that the PA model fails to qualitatively reproduce the fragility evo-
lution pattern (ry initially increases and after a time point it starts decreasing
gradually leading to robust enough graphs). More precisely, the first observation
is that for small values of m (i.e., m = [2,4]), the robustness seems to remain
almost constant, independently of the graph size. This can be explained by the
structural properties of the graphs generated by the PA model. In fact, it has
been shown that the PA model produces graphs that exhibit constant conduc-
tance and spectral gap (Mihail et al, 2003). Thus, the robustness of the graph, as
captured based on the notion of spectral gap, will also be constant as the graph
evolves — which is not the case of real social graphs. We also noticed that, as
parameter m increases, the r; index presents a small upward trend with respect
to the size of the graph.

Furthermore, for larger values of m, the robustness is improved (r; index
decreases); this can be considered as an evidence that if each new node creates
more edges in the graph, the overall connectivity of the graph potentially will
increase. However, we can observe that even for the largest examined value of
m = 8 and the largest graph of |V| = 350K nodes, the r; index cannot reach
extremely low values similar to the ones of real-world graphs. As we can see
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Fig. 9. Robustness index of the Preferential Attachment (PA) graph model. Observe that
even for large values of parameter m and graph size |V, the PA graphs cannot qualitatively
reproduce the observed robustness patterns.

from Table 4, this can only be achieved for very large values of m (e.g., as the
WIKIVOTE graph).

To conclude, we observed that the PA model cannot mimic the robustness
evolution of real graphs, mostly due to the constant conductance and spectral
gap properties. Definitely, the PA model does not reproduce several other re-
cently observed properties of real-world graphs, such as the shrinking diameter
(Leskovec et al, 2007).

7.2. Kronecker Model

The second model that we have examined in our study, is the Kronecker graph
model and the ability of Kronecker graphs to reproduce the observed robustness
patterns. The Kronecker model was introduced by Leskovec et al. (Leskovec et
al, 2010 (a)) as a simple generation model for real-world graphs, based on the
Kronecker product of matrices. More precisely, assuming an initiator adjacency
matrix A; of size ¢ x ¢, the Kronecker graph after k iterations is defined as the
graph with the following adjacency matrix:

A=A 10A.® - A=A, 1 ®A;. (4)

k iterations

In practice, a stochastic version of the Kronecker model is used, in the sense
that the initiator matrix A; is not the binary adjacency matrix itself but the
probability matrix for the existence of an edge. For example, in the typical case
of a 2 x 2 initiator matrix A; = [a b; ¢ d], each value represents the probability
of existence of the corresponding edge. Starting by such an initiator matrix and
applying the Kronecker product for a desired number of iterations k, the resulting
adjacency matrix of the graph corresponds to a realization of the matrix Ay, i.e.,
each edge (7, ) is introduced to the graph with probability Ag(4, j). For the rest
of our presentation, by the term Kronecker Graph we will refer to the stochastic
version of the model.
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Table 5. Robustness properties of Kronecker graphs for 2 x 2 and 3 X 3 initiator matrices
respectively, compared to the 7 index of the original graphs.

Kronecker Graphs
7, (2 X 2 Init. Matrix) 7 (3 x 3 Init. Matrix)

Graph Tk

EPINIONS

9.1577 x 10~15

2.6215 x 10797

1.6437 x 10~12

EMAIL-EUALL  1.0607 x 10~%7  0.0517 0.2071
SLASHDOT 3.7949 x 1015 6.6933 x 10797 1.6842 x 1099
WIKI-VOTE 2.7299 x 10~15  2.1923 x 10~15 2.3512 x 10799
FACEBOOK 5.6393 x 10~11  1.8354 x 10~1° 3.2705 x 10~08
YOUTUBE 1.8833 x 10~ 13 0.0474 0.0713
CA-ASTRO-PH  1.3500 x 10798 4.5312 x 1097 1.4090 x 10799
CA-GR-QC 0.5302 0.3681 0.3673
CA-HEP-TH 1.007 0.0932 0.4170
DBLP-1980 1.5034 0.2683 0.4599
DBLP-2006 1.7489 x 10~10  0.0641 0.0111

Crr-HEP-TH 7.9964 x 10710 2.4143 x 10~1° 9.7254 x 10~16

Kronecker graphs (and some very recent extensions (Seshadhri et al, 2013))
have been proved to produce graphs with properties similar to those of real
graphs. More specifically, the Kronecker graphs capture two well-known proper-
ties of dynamic graphs, namely the densification power-law and the property of
shrinking diameter (Leskovec et al, 2007). Our goal is to investigate the ability
of Kronecker graphs to reproduce the observed robustness properties. Next, we
briefly describe how the fit a Kronecker graph to a real network, i.e., how to
choose the parameters of the initiator matrix A;.

Fitting Process. As we mentioned earlier, the Kronecker graph model can be
described by the ¢ x ¢ initiator matrix A;. In order to decide the values of the
initiator matrix that could finally lead to a graph structurally similar to the
target one (after applying the Kronecker product for a number of iterations), we
apply the KRONFIT algorithm presented in (Leskovec et al, 2010 (a)). KRONFIT
is based on maximum likelihood and sampling techniques to estimate the pa-
rameters of the initiator matrix. Furthermore, the size ¢ of the initiator matrix
A is also a parameter of KRONFIT. We performed experiments for 2 x 2 and
3 X 3 initiator matrices. After computing A; for each of the graphs presented
in Table 2, we apply the Kronecker product of Eq. (4) for k iterations, until we
reach the number of nodes of the target graph.

Let us now provide a quantitative discussion of the robustness properties of
the Kronecker graphs and how close they are to the ones of real graphs. Table 5
shows the robustness index 7y, of the graphs generated by the Kronecker model
following the above fitting procedure, for two different sizes of the initiator matri-
ces, namely 2 x 2 and 3 x 3. For comparison reasons, the second column presents
the 7 index of the original graphs (as described in the experiments of Section
5). As we can observe, for some of the examined graphs, the robustness of the
artificial Kronecker graphs is relatively close to the one of real graphs. Note that,
we do not perform absolute comparison between the original and reproduced 7y,
values. In such a case, the absolute or relative error of r; values for most of the
studied graphs, should indicate that the reproduced values are far away from the
original ones. A direct comparison of the indices would not be appropriate due
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Fig. 10. Robustness index of Kronecker graphs (2 x 2 initiator matrix) for several iterations
of the Kronecker product.

to the fact that, during the iterations of the Kronecker product, the size (num-
ber of nodes and edges) of the produced graph does not match exactly to the
size of the original one. Nevertheless, we are mostly interested to qualitatively
examine if the Kronecker model can capture the existence or not of robustness
in graphs, and as the results suggest, there are cases of graphs (of both high
and low robustness) that the model performs relatively well. However, in a few
graphs (EMAIL-EUALL, YOUTUBE and DBLP-2006), the Kronecker models fails
to reproduce the observed robustness properties (even at a qualitative level).

Regarding the fitting capabilities of 2 x 2 and 3 x 3 initiator matrices, both
of them perform qualitatively similar. However, in many cases, the r; values
produced by these different size matrices, deviate. This mainly happens due
to the way that the Kronecker product of matrices (or graphs) works. As we
mentioned above, it is quite difficult to match the exact size of the graph; at
every iteration of the Kronecker product, the size of the corresponding graph is
raised to a power that depends on the size of the initiator matrix (square and
cubic respectively).

Furthermore, we have examined the ability of Kronecker model to qualita-
tively reproduce the fragility evolution pattern, i.e., how the robustness of the
graph changes while the graph evolves over time. More precisely, for three graphs
of Table 2, we have generated the Kronecker graphs beginning from the corre-
sponding 2 x 2 initiator matrices produced by the KRONFIT method. For every
iteration of the Kronecker product, we have computed the r; index and the
results are presented in Fig. 10.

As we can observe from Fig. 10, the robustness of the generated Kronecker
graphs improves gradually with respect to the number of Kronecker iterations
(rr index decreases). This observation suggests that the Kronecker graphs can
qualitatively capture the evolution of the robustness properties of real graphs,
reproducing the fragility evolution pattern. In other words, the Kronecker prod-
uct can potentially produce graphs with ever increasing robustness (until some
point). Of course, different settings for the initiator matrix will cause a slight
deviation to the form of the fragility evolution pattern, as the different curves in
Fig. 10 suggest.
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We should note here that in some cases and depending on the graph dataset,
we observed that the Kronecker model cannot capture exactly the small upward
trend on the fragility evolution pattern (i.e., the time points where the robust-
ness seems to decrease since the graph is still in an establishment period). This
mainly happens due to the fact that the size of the produced graphs (at ev-
ery Kronecker iteration) is increasing quickly due to the effect of the Kronecker
product. Therefore, only for a very small number of the very initial snapshots,
the robustness of the graph tends to be low (e.g., the first three iterations of the
Kron Slashdot graph in Fig. 10).

To conclude, we found out that Kronecker graphs are able to capture the
temporal evolution of the robustness index. However, the KRONFIT process, in
many cases, cannot reproduce the actual robustness indices of static graphs.

7.3. Forest Fire Model

The last graph generating model that we have examined is the Forest Fire (FF)
model (Leskovec et al, 2005), (Leskovec et al, 2007). The basic idea here is
to design a mechanism based on which new-coming nodes v;,i = 1,...,k are
attached to existing nodes of the graph G, in such a way that the resulting graph
will obey important properties, such as heavy-tailed degree distribution, the
densification power law and shrinking diameter. At each time step t of the model,
anode v that is entering in the network, chooses an ambassador node w randomly
and creates a link to w. Then, based on two parameters, namely the forward
burning probability py and the backward burning probability py, node v selects
a subset of w’s neighbors to create out-going and in-coming edges respectively.
This last step is recursively applied to all v’s new neighborhood nodes.

Fitting Process. Here we describe how to fit the parameters of the FF model
in order to generate graphs that are close the those of Table 2. Since in this
work we are interested in undirected networks, we consider only the forward
burning probability pf, and following the discussion in (Leskovec et al, 2007)
we set pp = 0.32 for the backward burning probability. Thus, given as input the
number of nodes |V| of the original graph, we search the parameter space of py
using step of § = 0.001, in order to generate a graph with number of edges |E|
close to the real one. Table 6 gives the values of p; for each of the examined
dataset.

Next, we examine how the graphs generated by the FF model behave in terms
robustness dynamics. Table 6 shows the robustness index r for the FF synthetic
graphs, after selecting appropriate values for the forward burning probability py
in order to fit the size with that of the original graph (for comparison reasons, we
also provide the 7y index of the original graph). We can observe that for most of
the examined graphs, the robustness of the FF artificial graphs is relatively close
to the real one. In other words, the FF model is able to qualitatively reproduce
the observed robustness 7, both in graphs with extremely small ry (e.g., WIKI-
VOTE dataset) as well as in graphs with large r; (e.g., CA-HEP-TH graph). In
many cases (e.g., SLASHDOT graph), the ry index of the generated graphs is
almost the same to the one of the real networks, while in some other cases,
although the generator still produces graphs with small r; index, the absolute
values are not very close (e.g., CA-ASTRO-PH graph). Again, we stress out here
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Table 6. Robustness of graphs generated by the Forest Fire model. The backward burning
probability is fixed to p, = 0.32.

Forest Fire

Graph Tk P Tk
EPINIONS 9.1577 x 10~15 0.349  2.4826 x 10~13
EMAIL-EUALL  1.0607 x 1097 0.119  4.4598
SLASHDOT 3.7949 x 10~15 0.354  3.6953 x 10~13
WIKI-VOTE 2.7299 x 10~15 0.386  4.2643 x 10~13
FACEBOOK 5.6393 x 10~ 11 0.366  5.6253 x 10~13
YOUTUBE 1.8833 x 10—13 0.295 6.5224 x 10795
CA-ASTRO-PH  1.3500 x 10—98 0.372 5.2723 x 1015
CA-GR-QC 0.5302 0.337 0.1114
CA-HEP-TH 1.0070 0.320 0.0974
DBLP-1980 1.5034 0.241  1.6278
DBLP-2006 1.7489 x 10—10 0.325 5.2084 x 10~14
CrT-HEP-TH 7.9964 x 10~10 0.372 8.1218 x 10~15

that an absolute comparison of these values would not be fair due to the nature
of the r; index. Nevertheless, we can infer that the FF model has the ability to
generate graphs with robustness properties close to the real ones.

An interesting point here is the behavior of the EMAIL-EUALL graph. In this
case, the FF model fails to reproduce the observed 7 index, where the produced
graphs tend to be extremely non robust (r, = 4.4598). One possible explanation
of this observation can be derived by the settings of the forward probability
value, i.e., py = 0.119, which tends to be away from most of the p¢ values for the
other datasets (py values are roughly in the range [0.25,0.39], as shown in Table
6). That is, in order to match the number of edges of the targeted graph, the
value of py is set relatively low. According to (Leskovec et al, 2007), this forward
probability value lead to graphs with small densification factor, something that
explains the observed property. Note that, the Kronecker model presented earlier,
also fails to reproduce the observed property for this graph dataset.

We have also examined the ability of FF model to reproduce the way that
the property of robustness changes as the graph evolves over time (fragility
evolution pattern). FF has been shown to produce graphs that densify over time
and their diameter shrinks — which is the case of real-networks. For values of
the forward burning probability py in the range [0.3,0.4] and different number
of nodes (100 — 10K), we study the behavior of the r; index. That way, for each
different value of py, we consider that we have a graph that evolves over time
based on the properties of the FF model and we are interested to examine the
temporal evolution of the r; index.

Figure 11 (a) depicts the evolution of r; under the FF model. As we can
observe, different values of p; typically lead to different behavior of the 7 index,
as the graph grows (note that, for small graphs, e.g., less than 1K nodes, there
is no clear difference in the behavior of the robustness). For small values of py,
ie, py = 0.3 and py = 0.32, the 7 index is almost constant as the size of
the graph increases. This behavior clearly deviates from the fragility evolution
pattern observed in real graphs. To gain further insights about this behavior, we
have also examined the evolution of the effective diameter under the FF model,
for these values of p;. As we can see from Fig. 11 (b), in the case of py = 0.3
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Fig. 11. (a) Robustness index of the Forest Fire graph generator and (b) the effective diam-
eter of the corresponding graphs, for various graph sizes and values of the forward burning
probability pg.

and py = 0.32 the diameter increases over time, something that deviates from
the shrinking diameter pattern of real networks (Leskovec et al, 2007).

The rest values of p; present interesting behavior. When py = 0.34 and
py = 0.36, the r; index behaves similar to the one in real graphs, reproducing
the fragility evolution pattern; for the very first small graph snapshots, ry is
close to one indicating absence of robustness, while as the size of the graph
increases, rj decreases smoothly leading to snapshots with improved robustness
index. As we can also observe from Fig. 11 (b) for these two values of ry, the
diameter of the graph initially increases for a few time points while the size of
the graph is relatively small; however, after a specific point the diameter starts
decreasing and almost stabilizes for the rest points. Notice that, the change point
roughly corresponds to the change point of the rj index (see also Section 6). For
the last two values of the forward burning probability p¢, i.e., py = 0.38 and
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py = 0.4, the FF model still approximates the evolution of the 7 index, but in a
more “abrupt” way, where graphs tend to become extremely robust very quickly.
Additionally, the evolution of diameter of these graphs is slightly different from
the previous case (py = 0.34 and py = 0.36), where except from the smaller
value, the shrinkage is more evident (especially for py = 0.4). To conclude, for
values of ry in the range [0.34,0.36] we observed that the FF model is able
to reproduce the fragility evolution pattern. Note that, for a similar range of
values, the authors of (Leskovec et al, 2009) observed that the FF model is able
to reproduce the community structure of real graphs, as captured by the NCP
plot (see also Paragraph 5.3).

8. Discussion and Conclusions

In this paper we studied the problem of estimating the robustness of social
graphs, using the notion of expansion properties. Although our work focuses on
social networks, the proposed robustness metric 5 can also be applied to other
types of graphs from different disciplines (e.g., biological networks). The main
contributions of this work are with respect to the following points:

— Fast robustness index: We presented a measure which captures in a single
number both the robustness as well as the community structure of a graph.
We showed that, relying on the spectral properties of real-world graphs, we
can efficiently and effectively compute this measure, making it scalable for
million-node graphs.

— Application on real graphs: We applied the proposed ry index to several large
real graphs, both static and time-evolving, and we observed the High Robust-
ness pattern as well as the Fragility Evolution pattern. These two patterns
give us further insights about the structure of large scale social graphs, and
in particular the common regularities observed in most of them propose new
structural properties (i.e., patterns) of real graphs.

— Abnormality detection: We showed how the observed patterns related to the
7 index can be used to detect anomalies in time-evolving graphs.

— Robustness properties of graph generating models: We studied several well-
known graph generating models and we examined their ability to reproduce the
observed robustness properties. Our results indicate that the Forest Fire model
appears to produce graphs with robustness properties close to the observed
ones, under appropriate settings of its parameters.

In addition to the above points, the proposed robustness measure can have
further practical applications, and one of them concerns the community detection
problem. In particular, the r; index can give a fast estimation of the existence of
“good” quality cuts in the network, and this knowledge can be further utilized
by the community detection algorithm.

As we have already discussed, the proposed robustness estimation method is
closely related to the existence of communities in real graphs. As future work, it
would be interesting to examine how the r; index is affected under the removal
of nodes based on their degree (i.e., deletion of high degree nodes or randomly
selected ones). This will help us to further study and understand the relationship
of the proposed metric with the robustness assessment techniques from the area
of network science (e.g., the work by Albert et al. (Albert et al, 2000)). Further-
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more, another future research direction could be the extension of the method to
the MapReduce framework for studying the robustness of billion-node graphs.
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Appendix

In this Appendix, we provide a more detailed description of how the property
of large spectral gap along with the subgraph centrality measure, lead to the
measure £(G) (Estrada, 2006) as presented in Section 3. First of all, the subgraph
centrality measure is defined as (Estrada and Rodriguez-Veldzquez, 2005)

> AL
SC(i)y =Y A VeV, (5)
=0

where the diagonal entry A;; of the matrix A contains the number of closed
walks of length ¢ that begin and end at the same node i. Focusing on unipartite
graphs and keeping only the odd length closed walks? in order to avoid cycles in
acyclic graphs, the SC' can be expressed as

VI
SC(i) = uZ sinh(\;) + Z u?j sinh(A;). (6)

Jj=2

If the graph has good expansion properties (and thus high robustness), it means
that A\; > Aa, and then u? sinh()\;) > Z‘j‘;g uZ; sinh();). Thus, Eq. (6) could
be written as

SC(i) ~ u? sinh(\;), Vi € V. (7)

This means that for graphs with high robustness, the principal eigenvector wu;;
will be related to SC(i) as

w;y o sinh Y2 () SC (i)', (8)

4 The bipartite graphs do not have odd length closed walks and thus the SC is computed
based on the even length closed walks. This happens replacing the sinh(-) function with the
cosh(+) (Estrada and Rodriguez-Veldzquez, 2005). But then the SC for the bipartite graphs
cannot be efficiently approximated using similar ideas with the proposed NSC}, (Section 4),
because of the fact that the cosh(:) is an even function. However, our approach for bipartite
graphs (Section 4, Proposition 4.1) overcomes this bottleneck and can be efficiently computed
for large scale graphs.
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This relation suggests that if the graph shows high robustness, u;; will be pro-
portional to SC(i) and a log-log plot of w;; vs. SC(i), Vi € V will show a linear
fit with slope 1/2 (the discrepancy plot).
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