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ABSTRACT
Understanding and controlling spreading dynamics in networks pre-
supposes the identification of those influential nodes that will trig-
ger an efficient information diffusion. It has been shown that the
best spreaders are the ones located in the core of the network – as
produced by the k-core decomposition. In this paper we further
refine the set of the most influential nodes, showing that the nodes
belonging to the bestK-truss subgraph, as identified by theK-truss
decomposition of the network, perform even better leading to faster
and wider epidemic spreading.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database applications—Data min-
ing
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1. INTRODUCTION
The problem of identifying influential spreaders in networks has

been attracting a significant part of the research community. It can
reveal new insights in application domains such as viral marketing,
epidemic control and more generally in information diffusion. The
problem can be sub-categorized in two subtopics: identification (i)
of individual influential spreaders and (ii) of a group of spreaders
that render the influence more efficient. Focusing on identifying
single spreaders, widely used criteria include the degree, between-
ness, closeness, eigenvector, PageRank centralities and the k-core
index [4]. It was recently shown that when applying SIR and SIS
modeling, that describe disease spreading [2], best spreaders cor-
respond to those identified by the k-core decomposition and not to
those being highly connected or having a bigger centrality [3].

In this work we show that the K-truss decomposition [5] can
serve as an even better criterion to identify privileged spreaders.
The nodes belonging to the maximal K-truss of the network, show
better spreading behavior compared to previously used importance
criteria. Our analysis on real datasets shows that, not only more
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nodes get infected during the outbreak of the epidemic, but also the
total number of nodes infected at the epidemic’s fadeout is greater.

Preliminaries. Let G = (V,E) be an undirected graph. Ck is de-
fined to be the k-core subgraph of G if it is a maximal connected
subgraph in which all nodes have degree at least k. Then, each node
v ∈ V has a core number cv = k, if it belongs to a k-core but not
to a (k + 1)-core. We denote as C the set of nodes with the max-
imum core number kmax (i.e., the nodes of the k-core subgraph of
G that corresponds to the maximum value of k). The K-truss de-
composition extends the notion of k-core using triangles, i.e., cycle
subgraphs of length 3. TheK-truss subgraph ofG, denoted by TK ,
K ≥ 2, is defined as the largest subgraph where all edges belong
to K − 2 triangles. Respectively, an edge e ∈ E has truss number
te = K if it belongs to TK but not to TK+1. Since the definition of
K-truss is per edge, we define the node’s truss number tv, v ∈ V
as the maximum te of its adjacent edges. Then, T denotes the set of
nodes with the maximum node truss number. It has been shown that
the maximal k-core and K-truss subgraphs (i.e., maximum values
for k,K) overlap, with the latter being a subgraph of the former;
in fact, K-truss represents the core of a k-core that filters out less
important information. Here, we are only interested for sets C and
T , that can be computed efficiently [5].

2. METHODOLOGY AND EVALUATION
In this paper we aim to identify those single spreaders in a net-

work that will achieve an efficient spreading of information. We
argue that those nodes are located in the previously defined set
T of the graph, produced by the K-truss method. To simulate
the spreading process, we use the Susceptible-Infected-Recovered
(SIR) model where the nodes can be in the respective state that
the names suggest [2]. Initially, we set one node to be infected (our
single spreader, as chosen by different methods described later) and
the rest of the nodes at the susceptible state. At each time step, the
infected nodes that were infected at a previous time step, can infect
their neighbors with probability β (i.e., infection rate). At every
time step, a node that has been previously infected can recover from
the disease with a probability γ (i.e., recovery rate). The process
is repeated until there are no infected nodes in the network. Here
we set the parameter β close to the epidemic threshold τ = 1/λ1,
where λ1 is the largest eigenvalue of the adjacency matrix of the
network [1]. We also set parameter γ = 0.8, as used in Ref. [3].

We are comparing the average spreading behavior of the nodes
belonging to the set T (truss method), to those belonging to the
set C − T (core method) (i.e., the nodes belonging to the k-core
excluding those that belong to the K-truss of the graph – since
T is subset of C) and those belonging to the set D that contains
the highest degree nodes in the graph (top degree method); we



choose |C| − |T | high degree nodes to achieve fair comparison
between the different methods. We have performed experiments
with the following real-world networks: EMAIL-ENRON, EPIN-
IONS and WIKI-VOTE (snap.stanford.edu). All graphs are
considered undirected and unweighted (see Table 1).

Table 1: Network datasets used in this study.
Network Name Nodes Edges |C| − |T | |T |
EMAIL-ENRON 33,696 180,811 231 44
EPINIONS 75,877 405,739 425 61
WIKI-VOTE 7,066 100,736 286 50

Table 2: Average number of infected nodes for some steps of
the SIR model, using β close to the epidemic threshold of each
graph and γ = 0.8. Fin. step column shows the total number of
infected nodes at the end of the process (with std. deviation σ).

Time Step Max
Method 2 6 10 Fin. step σ step

EMAIL- truss 8.44 204.08 355.84 2,596.52 136.7 33
ENRON core 4.78 152.55 364.13 2,465.60 199.6 37

top deg 6.89 155.48 357.08 2,471.67 354.8 36
EPINIONS truss 4.17 75.04 329.08 2,567.69 227.8 37

core 3.45 55.27 280.03 2,325.37 327.2 43
top deg 4.22 58.84 289.49 2,414.99 331.7 47

WIKI- truss 2.92 15.27 42.46 560.66 114.9 52
VOTE core 1.92 10.65 32.40 466.01 104.5 57

top deg 2.43 12.05 35.55 502.88 104.5 62

To evaluate the performance of the methods, we perform the SIR
simulation starting from a single node each time. For each node,
we repeat the simulation 100 times to get the average behavior of
the node. For each of the settings, we repeat the above for all the
respective nodes and calculate the average behavior for the nodes of
each set. Results from the experiments are shown in Table 2. The
truss method achieves significantly higher infection rate during the
first steps of the epidemic. Also, the total number of infected nodes
at the end of the process is larger (Fin. step), while the fade out
occurs earlier (Max step). Lastly, the number of nodes in the truss
set T is much smaller compared to the set C − T (Table 1). By
refining significantly the set of influential nodes in truss set T , the
"weaker" spreaders of C are left in core set C − T explaining the
inferior behavior of the core method compared to the top degree.

We have also computed the cumulative differences of the number
of infected nodes per step achieved by the methods. Let I truss

t be
the number of infected nodes at step t achieved by the truss method
(similar for core and top degree). We define the cumulative dif-
ference for the truss and core methods at step t as Dtruss-core

t =
cumsumz=1...t(I

truss
z − Icore

z ) (similar for truss vs. top degree).
The results are shown at Fig. 1. We observe that the cumulative
difference of the number of nodes that are being infected at every
step is always bigger between truss and core than between truss
and top degree. Both differences increase during the outbreak of
the disease until they stabilize to the number of nodes which is ac-
tually the final difference of the number of nodes that got infected
during the epidemic of the two compared methods. Clearly, as the
differences are always above zero, one can conclude to the effec-
tiveness of information diffusion when starting from nodes belong-
ing to truss. Worth mentioning is that on average, the epidemic
stops at an earlier time step when the spreading is triggered from
the truss nodes.
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(a) EMAIL-ENRON: β = 0.01 (b) EMAIL-ENRON: β = 0.03
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(c) EPINIONS: β = 0.007 (d) EPINIONS: β = 0.01
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(e) WIKI-VOTE: β = 0.009 (f) WIKI-VOTE: β = 0.01

Figure 1: Cumulative differences of infected nodes per step
achieved by the truss method vs. the core (truss - core) and
top degree (truss - degree) methods.

3. CONCLUSIONS
In this work, we showed that the K-truss decomposition of a

network can help towards identifying single influential spreaders.
K-truss, being a subset of the k-core of the network, contributes
in the reduction of the set of privileged spreaders for information
diffusion [3]. Using the SIR epidemic model, we show that such
spreaders will influence a greater part of the network during the first
steps of the process, but will also cover a larger portion of it at the
end. Future research includes finding multiple influential spreaders
utilizing the properties of k-core and K-truss decompositions.
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