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1. INTRODUCTION AND PRELIMINARIES
Understanding the properties and dynamics of social networks,

arising from online social networking and social media platforms,
is an interesting task with plenty of applications in both the Web
and social sciences. Typically, the structure of social networks is
not static but is governed by an increased level of evolution. Users
decide to join in online communities for various reasons (e.g., cre-
ate new friendship relationships), that mostly express means of in-
teraction among individuals in the social web.

Furthermore, it is expected that some users may decide to leave
the network, or in general to stop being active in the activities of
their community. This phenomenon, also known as churn or at-
trition, has been an important topic in the business domain. The
key point here is that this decision can affect the decisions of their
neighbors in the social graph that, in their turn, may decide to de-
part as well. That way, the departure of a single user (node) can
become a disengagement epidemic, forming a cascade of potential
individual departures that may have consequences to the overall
structure of the network. Being able to model and analyze such
phenomena in real social networks is an important task, since they
are related to the vulnerability of these social interaction systems
under node departures.

The problem of robustness (or vulnerability) assessment in real
networks has been extensively studied by different research com-
munities, including sociology, statistical physics and computer sci-
ence. The observation of the power-law degree distribution in real
networks [1] was the basis for several works (e.g., [2, 6]), which
shown that real networks are robust against random failures but
vulnerable under attacks to high degree nodes.

However, in the case of social networks, instead of degree-based
failures and attacks, users decide to depart from or stay in the net-
work based on their own engagement level. Recent studies about
the departure dynamics in social networks suggest that the engage-
ment level of nodes, using topological features of the network, are
not accurately described by the node degree [3, 5, 4] and therefore,
well-known degree-based types of robustness assessment may not
accurately capture this feature of social networks. Under these set-
tings, it has been proposed (based on theoretical and experimental
results) that the engagement level of a node i ∈ V can be captured
by the core number ci, as produced by the k-core decomposition
[3, 5, 4]. A subgraph H of G is defined to be a k-core of G, if
it is a maximal connected subgraph of G, in which all nodes have
degree at least k. Then, node i has core number ci = k, if it be-
longs to a k-core but not to any (k+1)-core. That way, nodes with
high core number ci show better engagement properties and there-

fore, it is less probable to depart from the graph. The idea behind
this modeling approach is based on the following game theoretic
concept: nodes that want to gain an explicit benefit by remaining
engaged in the network, they should align their decision (leave or
stay) with the one of their neighbors. Furthermore, the core num-
ber ci combines in a meaningful way two intuitive requirements for
high engagement namely, node degree di and the level of interac-
tion among neighborhood nodes.

The goal of this paper is to introduce and study a novel prob-
lem of vulnerability assessment in social networks, under cascades
caused by node departures based on their engagement level. Ini-
tially, we propose the Cascading Departure (CasD) model, a k-core
decomposition based model to capture the cascading (epidemic)
disengagement effect due to the departure of a node. Then, combin-
ing the property of power-law core number distribution observed
in social networks (see Fig. 1 (a)) with the proposed Cascading
Departure model, we introduce a new problem of vulnerability as-
sessment in social graphs based on cascades triggered by random
and targeted node departures based on the core-number. We have
performed and present preliminary experiments on real graphs, and
our key observation is that online social networks are extremely
robust under cascades started by random departures of nodes; how-
ever, they are highly vulnerable under cascades caused by targeted
departures of nodes with high engagement level.

2. GRAPH VULNERABILITY UNDER NODE
DEPARTURES

Initially, we introduce the proposed Cascading Departure (CasD)
model. As we have already discussed, the departure of a node can
cause direct effects in its neighborhood, in the sense that some of
the friends in the social graph may also decide to depart – leading
to an epidemic of disengagement. Let G = (V,E) be the undi-
rected graph that models a social network. Suppose that a node
v ∈ V decides to depart (next we will describe how this node can
be selected, namely randomly or targeted) and let Ṽ = V \ {v} be
the remaining node set. At each time step of the model, two points
need to be specified: (i) how to determine if a departure affects a
neighborhood node, and (ii) how the affected by the cascade nodes
decide to depart.

To address these points, we capitalize on the relationship be-
tween the engagement property and the core number, as described
earlier [3, 5, 4]. Let ci and c̃i be the core numbers of a node i be-
fore and after the departure respectively. Each node i ∈ V has an
engagement level – that can be captured by the core number ci –
which expresses the incentive of the node to remain in the graph
(or inversely, to depart). Thus, we consider that the nodes that are
affected by a departure are those which their core number ci has
changed after the departure of node v. We know that after the dele-
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(a) Core number distribution (b) Fraction of removed nodes (c) Network fragmentation

Figure 1: Results on the EPINIONS social network. (a) Cumulative core number distribution. Observe that the distribution is heavy-
tailed. (b) Cumulative fraction of removed (affected) nodes per iteration of the CasD model (ten runs), under random and targeted
node departures based on their engagement level. (c) Fraction of nodes (logarithmic scale) in the largest connected component S and
in the rest isolated connected components 〈s〉 per iteration of the CasD model (ten runs), under random and targeted departures.

tion of a node, the core number of each node c̃i in the graph, can
either be reduced by one or remain the same. Thus, if c̃i < ci,
node i is characterized as affected by the cascade. Furthermore,
in order to specify if an affected node i ∈ Ṽ will finally depart,
we consider that the probability of departure should be inversely
related to the core number c̃i (nodes with lower core number are
more probable to leave). Let c̃norm

i = c̃i−min(c̃)
max(c̃)−min(c̃)

, ∀i ∈ Ṽ be
the normalized core number of node i in the range of [0, 1], where
c̃ = [c̃1, c̃2, . . . , c̃|Ṽ |] is a vector that contains the core numbers of
each node, and min(·),max(·) are functions that return the mini-
mum and maximum element of a vector. Then, node i is removed
from the graph with probability Pr

(
Ṽ = Ṽ \ {i}

)
= 1 − c̃norm

i .
This process is repeated as long as nodes continue to be affected
by departures during the previous time step. In order to quantify
the disengagement effect of a departure, we keep track of the set of
removed nodes R. As we will present shortly, the size of this set
depends heavily on how the initial node v of the cascade is selected.

Note that, in contrast to other degree-based models which mostly
consider features of technological networks (like the Internet) that
are responsible for functional errors (e.g., [6, 1]), the proposed
model naturally captures the social component of an epidemic pro-
cess in social networks, in the sense that the decision of individu-
als can potentially be affected by the decisions of other individuals
within their social environment.

The CasD model is heavily based on the engagement level of
each node, as captured by the core number. We have examined
the core number distribution of several social networks, and in Fig.
1 (a) we depict the results for the EPINIONS social network1. As
we can observe, core numbers follow a heavy-tailed distribution,
where most of the nodes demonstrate small core number and there-
fore their engagement level tends to be low. On the other hand,
only a few nodes have high core number and these nodes can be
considered as the most engaged ones. That way, if we randomly
select a node, this node is more probable to have low core number
due to the skewness of the distribution.

Based on these points, we define two different strategies of node
departures, i.e., how to select a single node v ∈ V that will de-
part first and trigger a cascade: (i) random departure: a randomly
selected node leaves the graph; (ii) targeted departure: a node se-
lected among the ones with the highest core number decides to de-
part. The first strategy simulates what is more probable to occur
in practice (nodes with lower engagement are more probable to de-
part). The strategy of targeted departures captures the case in which

1Who-trusts-whom social network, extracted from the product re-
view website www.epinions.com. The graph has 75, 877
nodes and 405, 739 edges. Data from: snap.stanford.edu.

a node, although it does not have incentive to leave (as expressed by
a high core number), it finally departs due to external factors (such
as an adversary that motivates a user to disengage from the activi-
ties of the network). To study the dynamics of these strategies, we
apply the CasD model selecting accordingly the initial node v. To
assess the vulnerability of social networks, we examine the total
fraction of removed nodes during the execution of the model (i.e.,
for the time steps that the epidemic is spreading), and the fragmen-
tation of the graph as captured by the sizes of the largest connected
component S and the rest isolated components 〈s〉. As we can ob-
serve from Fig. 1 (b), in the case where the initial node is selected
randomly, the fraction of affected nodes is extremely small and the
epidemic typically dies out early. On the other hand, targeted de-
partures have the potential to affect a large portion of the graph,
typically more than 50% of the nodes, and this behavior is persis-
tent for all the datasets that we have examined. Additionally, as
Fig. 1 (c) depicts, the fragmentation of graph is much more intense
in the case of a cascade triggered by a targeted departure.

These results indicate that social networks are extremely robust
under cascades triggered by the departure of randomly selected
nodes, but they tend to be highly vulnerable in cascades caused
by targeted departures of nodes with high engagement level. This
suggests an additional robust-yet-fragile property of networks with
heterogeneous structural characteristics. We consider that the pro-
posed problem of vulnerability assessment is more close to what
really occurs in social networks, and suggests several directions for
future work. One possible direction could be to further validate the
predictive cascade capabilities of the model by examining depar-
ture (or inactivity) traces of real networks. The CasD model can be
thought of as an epidemic process and therefore a more thorough
theoretical analysis of its properties is also an interesting direction.
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