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Social Media and Networks

� Online social networks and
social media

� Easily accessible network
data at large scale

� Opportunity to scale up
observations

� Large amounts of data raise
new questions
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Objectives and Contributions
Modeling Engagement Dynamics

� Given a large social graph, how can we model and quantify the
engagement properties of nodes?

� User engagement refers to the extend that an individual is encouraged
to participate in the activities of a community

� Closely related property to the one of node departure dynamics
� Similar to the decision of becoming member of a community, an individual

may also decide to leave the network

Main Contributions

� Study the property of engagement and how it can be used for modeling
the departure dynamics in social graphs

� Measures of engagement (node and graph level)

� Experiments: Properties and dynamics of real graphs

� Implications of our study on a new problem of robustness/vulnerability
assessment

5/31 F. D. Malliaros and M. Vazirgiannis Modeling Engagement Dynamics in Social Graphs CIKM ’13



Introduction Problem Description Proposed Measures Engagement of Real Graphs Discussion and Conclusions

Objectives and Contributions
Modeling Engagement Dynamics

� Given a large social graph, how can we model and quantify the
engagement properties of nodes?

� User engagement refers to the extend that an individual is encouraged
to participate in the activities of a community

� Closely related property to the one of node departure dynamics
� Similar to the decision of becoming member of a community, an individual

may also decide to leave the network

Main Contributions

� Study the property of engagement and how it can be used for modeling
the departure dynamics in social graphs

� Measures of engagement (node and graph level)

� Experiments: Properties and dynamics of real graphs

� Implications of our study on a new problem of robustness/vulnerability
assessment

5/31 F. D. Malliaros and M. Vazirgiannis Modeling Engagement Dynamics in Social Graphs CIKM ’13



Introduction Problem Description Proposed Measures Engagement of Real Graphs Discussion and Conclusions

Outline

1 Introduction

2 Problem Description

3 Proposed Engagement Measures

4 Engagement of Real Graphs

5 Discussion and Conclusions

6/31 F. D. Malliaros and M. Vazirgiannis Modeling Engagement Dynamics in Social Graphs CIKM ’13



Introduction Problem Description Proposed Measures Engagement of Real Graphs Discussion and Conclusions

Problem Statement (1/2)

Goal:

Model and study the problem of node engagement in social graphs, from a
network-wise point of view

� Consider information only about the underlying graph structure

� Each individual that participates in a social
activity, derives a benefit

� The benefit emanates from his/her neighborhood

� The benefit of each individual is affected by the
degree of interaction among its neighbors
[Ugander et al., PNAS ’12]

� If ones friends tend to highly interact among each
other, the benefit of remaining engaged in the
graph could potentially be increased

v
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Problem Statement (2/2)

� Suppose now that a user decides to drop out due to the fact that the
incentive of remaining engaged has been reduced

� This decision will cause direct effects in his neighborhood→ Some
of his friends may also decide to depart

� A departure can become an epidemic (or contagion), forming a
cascade of individual departures
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Problem Statement (2/2)

� Suppose now that a user decides to drop out due to the fact that the
incentive of remaining engaged has been reduced

� This decision will cause direct effects in his neighborhood→ Some
of his friends may also decide to depart

� A departure can become an epidemic (or contagion), forming a
cascade of individual departures

� Direct-benefit effects: to incur an
explicit benefit by remaining engaged,
the decision of a node should align
with the one of their neighbors
[Easley and Kleinberg, ’10]
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Model Description (1/2)

� Each node v ∈ V can either remain engaged or can decide to depart

� The behavior of nodes as a system can be captured by the notion of
networked coordination games [Easley and Kleinberg, ’10]

� Network model based on direct benefit effects→ the benefit increases as
more neighbors decide to stay

� Nodes decide simultaneously whether to stay or leave
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Model Description (2/2)

� X = {0, 1}: set of possible strategies (i.e., leave or stay )
x = [x1, x2, . . . , xn]: vector that denotes the decision of each node
i ∈ V

� Node payoff function:
Πi (x) = benefit

(
xi ,
∑

j∈Ni
xj

)
− cost(xi ),Ni = {j ∈ V : (i, j) ∈ E}

� Benefit function: depends on node’s own decision and the
aggregate decision of the neighbors

� Cost function: does not need to be known a priori→ remain
engaged if cost ≤ benefit (non-negative payoff)

Equilibrium Property [Manshadi and Johari, ’09]; [Harkins, ’13]

The best response of each node i ∈ V corresponds to the core number ci
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k -core Decomposition

Example

3-core

2-core

1-core

Core number ci = 1

Core number ci = 2

Core number ci = 3

Graph Degeneracy δ∗(G) = 3
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Proposed Engagement Measures (1/3)
Node Engagement

Proposition (Node Engagement)

The engagement level ei of each node i ∈ V is defined as its core number ci

� Nodes with higher core number→ better engagement

Prob. of departure vs. core number
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CAIDA graph

� More refined modeling explanation of the
departure dynamics in social graphs [Wu et
al., WSDM ’13]

� Active users: core of the graph
� Inactive users: periphery of the graph
� The departure of nodes is proportional

to their position in the graph
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Proposed Engagement Measures (2/3)
Engagement Subgraphs

Definition (k -Engagement Subgraph Gk )

The graph which is induced by the nodes i ∈ V with
engagement level ei ≥ k

Proposition (Max-Engagement Subgraph Gemax )

� Let k = δ∗(G) be the degeneracy of the
graph, i.e., the maximum k such that there
exists a k -engagement subgraph

� Maximum engagement level of the graph:
emax = δ∗(G)

� Max-Engagement subgraph: composed by the
nodes with engagement e = emax

Example graph

2-Engag. Sub.

1-Engagement Subgraph

3-Engag. Sub.

Max-Engagement
Subgraph Gemax
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Proposed Engagement Measures (3/3)
Graph Engagement

Definition (Graph Engagement EG)

Let F(e) = Pr(X ≥ e) be the CDF of the sizes of the k -engagement subgraphs.
Then, the total engagement level of a graph G, denoted as EG , is defined as the area
under the curve of F(e), e = [0, 1], i.e., EG =

∫ 1
0 F(e) de

� Values in the range [0, 1]

� Higher EG values→ higher total engagement

Schematic representation of EG

Normalized Engagement e
0

1

1

F
(e
)
=

P
r(
X
≥

e)

EG

EKn

Complete graph

Kn
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Datasets

Basic Characteristics of Real-World Networks
Graph # Nodes # Edges
FACEBOOK 63, 392 816, 886
YOUTUBE 1, 134, 890 2, 987, 624
SLASHDOT 77, 360 546, 487
EPINIONS 75, 877 405, 739
EMAIL-EUALL 224, 832 340, 795
EMAIL-ENRON 33, 696 180, 811
CA-GR-QC 4, 158 13, 428
CA-ASTRO-PH 17, 903 197, 031
CA-HEP-PH 11, 204 117, 649
CA-HEP-TH 8, 638 24, 827
CA-COND-MAT 21, 363 91, 342
DBLP 404, 892 1, 422, 263
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Experimental Setup

Address the following points:

P1 Study the characteristics of the engagement dynamics in real graphs

P2 Examine how other graph features are related to the engagement of the
graph

� Additional point: linear time complexityO(|E| + |V |)
� Properties of the k -core decomposition [Batagelj and Zaversnik, ’03]
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High Level Properties of k -Engagement Subgraphs (1/2)
Size Distribution

Size distribution of k -engagement subgraphs Gk
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(a) FACEBOOK (b) YOUTUBE
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(c) DBLP (d) CA-HEP-PH

� Almost skewed distribution

� Small subgraphs with
high engagement k

� Different behavior between
real and randomly rewired
graphs
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High Level Properties of k -Engagement Subgraphs (2/2)
Characteristics of Max-Engagement Subgraph Gemax

|V | vs. emax
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Closed triplets in G vs. emax
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Graphs’ Engagement Properties
Engagement Index EG

EG index for social graphs
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EG index for collaboration graphs
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� FACEBOOK has the maximum engagement index EG

� A relatively high fraction of nodes has high (normalized) engagement e

� DBLP shows the lower engagement index EG in the collaboration graphs

� Possible explanation: significant number of “relatively” new authors with
low engagement
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Near Self Similar k -Engagement Subgraphs
Cumulative degree distribution of Gk (k = 1, . . . , 20)
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Node engagement e vs. node degree
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The shape of the cumulative
degree distribution of Gk ’s is

retained for various values of k

High degree nodes are possible
to have low engagement
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Engagement and Clustering Structures

Average clustering coefficient per Gk
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� Relation between engagement level and clustering structures in the graph

� The probability of departure for a node is related to the overall
neighborhood activity [Wu et al., WSDM ’13]

� The avg. CC increases gradually as we are moving to Gk ’s of higher
engagement
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Disengagement Social Contagion

� Robustness/vulnerability assessment under node removals
(departures) based on the engagement level

� The departure of a node can cause a cascade of node removals

� We argue that nodes with high engagement will cause higher effect in the
graph

� Almost skewed size distribution of the k -engagement subgraphs for
real-world graphs

� Random departures
� Targeted departures

� Robustness assessment similar to the seminal result by Albert, Jeong
and Barabási [Albert et al., Nature ’00]
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Conclusions and Future Work

Contributions:
� Engagement property in social graphs and connection with the

departure dynamics

� Measures of engagement at both node and graph level

� Experiments: Engagement dynamics of real graphs

Future work:
� Extend the study on more complex types of graphs (e.g., directed,

signed)

� Robustness/vulnerability assessment under targeted and random node
departures based on the engagement level
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