To Stay or Not to Stay: Modeling Engagement Dynamics in Social Graphs

Fragkiskos D. Malliaros¹

Michalis Vazirgiannis^{1,2}

¹École Polytechnique, France

²Athens University of Economics and Business, Greece

ACM International Conference on Information and Knowledge Management (CIKM 2013)

San Francisco, CA October 27 – November 1, 2013

1 Introduction

- 2 Problem Description
- 3 Proposed Engagement Measures
- 4 Engagement of Real Graphs
- 5 Discussion and Conclusions

Outline

1 Introduction

- 2 Problem Description
- B Proposed Engagement Measures
- 4 Engagement of Real Graphs
- 5 Discussion and Conclusions

Discussion and Conclusions

Social Media and Networks

- Online social networks and social media
- Easily accessible network data at large scale
- Opportunity to scale up observations
- Large amounts of data raise new questions

Objectives and Contributions Modeling Engagement Dynamics

- Given a large social graph, how can we model and quantify the engagement properties of nodes?
- User engagement refers to the extend that an individual is encouraged to participate in the activities of a community
- Closely related property to the one of node departure dynamics
 - Similar to the decision of becoming member of a community, an individual may also decide to leave the network

Main Contributions

- Study the property of engagement and how it can be used for modeling the departure dynamics in social graphs
- Measures of engagement (node and graph level)
- Experiments: Properties and dynamics of real graphs
- Implications of our study on a new problem of robustness/vulnerability assessment

Objectives and Contributions Modeling Engagement Dynamics

- Given a large social graph, how can we model and quantify the engagement properties of nodes?
- User engagement refers to the extend that an individual is encouraged to participate in the activities of a community
- Closely related property to the one of node departure dynamics
 - Similar to the decision of becoming member of a community, an individual may also decide to leave the network

Main Contributions

- Study the property of engagement and how it can be used for modeling the departure dynamics in social graphs
- Measures of engagement (node and graph level)
- Experiments: Properties and dynamics of real graphs
- Implications of our study on a new problem of robustness/vulnerability assessment

1 Introduction

2 Problem Description

- B Proposed Engagement Measures
- 4 Engagement of Real Graphs
- 5 Discussion and Conclusions

Goal:

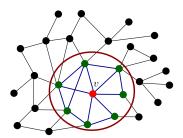
Model and study the problem of node engagement in social graphs, from a **network-wise** point of view

Consider information only about the underlying graph structure

Goal:

Model and study the problem of node engagement in social graphs, from a **network-wise** point of view

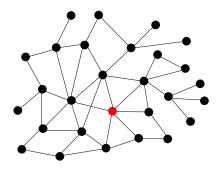
- Consider information only about the underlying graph structure
- Each individual that participates in a social activity, derives a benefit
 - The benefit emanates from his/her neighborhood
- The benefit of each individual is affected by the degree of interaction among its neighbors [Ugander et al., PNAS '12]
 - If ones friends tend to highly interact among each other, the benefit of remaining engaged in the graph could potentially be increased



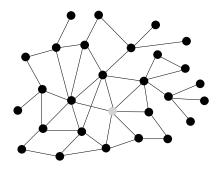
Introduction

- Suppose now that a user decides to drop out due to the fact that the incentive of remaining engaged has been reduced
 - □ This decision will cause direct effects in his neighborhood → Some of his friends may also decide to depart
 - A departure can become an epidemic (or contagion), forming a cascade of individual departures

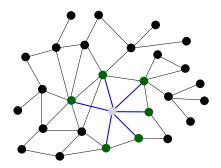
- Suppose now that a user decides to drop out due to the fact that the incentive of remaining engaged has been reduced
 - □ This decision will cause direct effects in his neighborhood → Some of his friends may also decide to depart
 - A departure can become an epidemic (or contagion), forming a cascade of individual departures



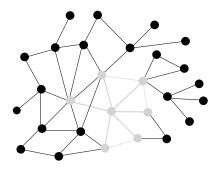
- Suppose now that a user decides to drop out due to the fact that the incentive of remaining engaged has been reduced
 - □ This decision will cause direct effects in his neighborhood → Some of his friends may also decide to depart
 - A departure can become an epidemic (or contagion), forming a cascade of individual departures



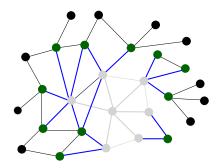
- Suppose now that a user decides to drop out due to the fact that the incentive of remaining engaged has been reduced
 - □ This decision will cause direct effects in his neighborhood → Some of his friends may also decide to depart
 - A departure can become an epidemic (or contagion), forming a cascade of individual departures



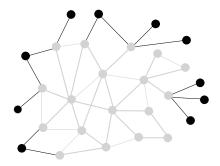
- Suppose now that a user decides to drop out due to the fact that the incentive of remaining engaged has been reduced
 - □ This decision will cause direct effects in his neighborhood → Some of his friends may also decide to depart
 - A departure can become an epidemic (or contagion), forming a cascade of individual departures



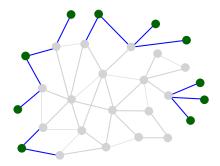
- Suppose now that a user decides to drop out due to the fact that the incentive of remaining engaged has been reduced
 - □ This decision will cause direct effects in his neighborhood → Some of his friends may also decide to depart
 - A departure can become an epidemic (or contagion), forming a cascade of individual departures



- Suppose now that a user decides to drop out due to the fact that the incentive of remaining engaged has been reduced
 - □ This decision will cause direct effects in his neighborhood → Some of his friends may also decide to depart
 - A departure can become an epidemic (or contagion), forming a cascade of individual departures

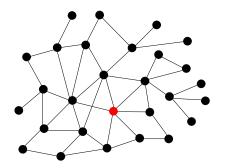


- Suppose now that a user decides to drop out due to the fact that the incentive of remaining engaged has been reduced
 - □ This decision will cause direct effects in his neighborhood → Some of his friends may also decide to depart
 - A departure can become an epidemic (or contagion), forming a cascade of individual departures



- Suppose now that a user decides to drop out due to the fact that the incentive of remaining engaged has been reduced
 - □ This decision will cause direct effects in his neighborhood → Some of his friends may also decide to depart
 - A departure can become an epidemic (or contagion), forming a cascade of individual departures

- (2/2)
- Suppose now that a user decides to drop out due to the fact that the incentive of remaining engaged has been reduced
 - □ This decision will cause direct effects in his neighborhood → Some of his friends may also decide to depart
 - A departure can become an epidemic (or contagion), forming a cascade of individual departures



 Direct-benefit effects: to incur an explicit benefit by remaining engaged, the decision of a node should align with the one of their neighbors [Easley and Kleinberg, '10]

Each node $v \in V$ can either remain engaged or can decide to depart

- The behavior of nodes as a system can be captured by the notion of networked coordination games [Easley and Kleinberg, '10]
 - $\hfill\square$ Network model based on direct benefit effects \rightarrow the benefit increases as more neighbors decide to stay
 - Nodes decide simultaneously whether to stay or leave

- Each node $v \in V$ can either remain engaged or can decide to depart
- The behavior of nodes as a system can be captured by the notion of networked coordination games [Easley and Kleinberg, '10]
 - □ Network model based on direct benefit effects → the benefit increases as more neighbors decide to stay
 - Nodes decide simultaneously whether to stay or leave

- $\mathcal{X} = \{0, 1\}$: set of possible strategies (i.e., *leave* or *stay*) $\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n]$: vector that denotes the decision of each node $i \in V$
- Node payoff function: $\Pi_i(\mathbf{x}) = \text{benefit}\Big(\mathbf{x}_i, \sum_{j \in \mathcal{N}_i} \mathbf{x}_j\Big) - \text{cost}(\mathbf{x}_i), \, \mathcal{N}_i = \{j \in V : (i, j) \in E\}$
 - Benefit function: depends on node's own decision and the aggregate decision of the neighbors
 - □ Cost function: does not need to be known a priori → remain engaged if cost ≤ benefit (non-negative payoff)

Equilibrium Property [Manshadi and Johari, '09]; [Harkins, '13]

The best response of each node $i \in V$ corresponds to the core number c_i

- $\mathcal{X} = \{0, 1\}$: set of possible strategies (i.e., *leave* or *stay*) $\mathbf{x} = [x_1, x_2, \dots, x_n]$: vector that denotes the decision of each node $i \in V$
- Node payoff function: $\Pi_i(\mathbf{x}) = \text{benefit}\left(\mathbf{x}_i, \sum_{j \in \mathcal{N}_i} \mathbf{x}_j\right) - \text{cost}(\mathbf{x}_i), \mathcal{N}_i = \{j \in \mathbf{V} : (i, j) \in \mathbf{E}\}$
 - Benefit function: depends on node's own decision and the aggregate decision of the neighbors
 - □ Cost function: does not need to be known a priori → remain engaged if cost ≤ benefit (non-negative payoff)

Equilibrium Property [Manshadi and Johari, '09]; [Harkins, '13]

The best response of each node $i \in V$ corresponds to the *core number* c_i

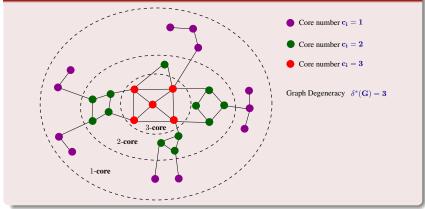
- $\mathcal{X} = \{0, 1\}$: set of possible strategies (i.e., *leave* or *stay*) $\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n]$: vector that denotes the decision of each node $i \in V$
- Node payoff function: $\Pi_i(\mathbf{x}) = \text{benefit}\left(\mathbf{x}_i, \sum_{j \in \mathcal{N}_i} \mathbf{x}_j\right) - \text{cost}(\mathbf{x}_i), \mathcal{N}_i = \{j \in \mathbf{V} : (i, j) \in \mathbf{E}\}$
 - Benefit function: depends on node's own decision and the aggregate decision of the neighbors
 - □ Cost function: does not need to be known a priori → remain engaged if cost ≤ benefit (non-negative payoff)

Equilibrium Property [Manshadi and Johari, '09]; [Harkins, '13]

The best response of each node $i \in V$ corresponds to the core number c_i

k-core Decomposition

Example



Outline

1 Introduction

2 Problem Description

3 Proposed Engagement Measures

4 Engagement of Real Graphs

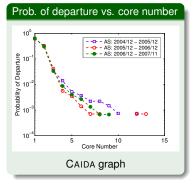
5 Discussion and Conclusions

Proposed Engagement Measures Node Engagement

Proposition (Node Engagement)

The engagement level e_i of each node $i \in V$ is defined as its core number c_i

■ Nodes with higher core number → better engagement



- More refined modeling explanation of the departure dynamics in social graphs [Wu et al., WSDM '13]
 - □ Active users: core of the graph
 - Inactive users: periphery of the graph
 - The departure of nodes is proportional to their position in the graph

Proposed Engagement Measures Engagement Subgraphs

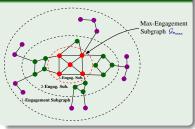
Definition (*k*-Engagement Subgraph G_k)

The graph which is induced by the nodes $i \in V$ with engagement level $e_i \ge k$

Proposition (Max-Engagement Subgraph $\mathcal{G}_{e_{max}}$)

- Let k = δ*(G) be the degeneracy of the graph, i.e., the maximum k such that there exists a k-engagement subgraph
- Maximum engagement level of the graph: e_{max} = δ*(G)
- Max-Engagement subgraph: composed by the nodes with engagement e = e_{max}

Example graph

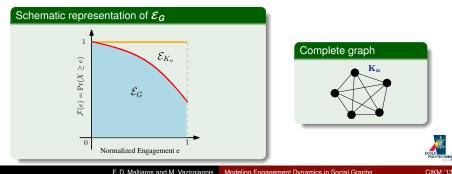


Proposed Engagement Measures Graph Engagement

Definition (Graph Engagement \mathcal{E}_{G})

Let $\mathcal{F}(e) = \Pr(X > e)$ be the CDF of the sizes of the *k*-engagement subgraphs. Then, the total engagement level of a graph G, denoted as \mathcal{E}_G , is defined as the area under the curve of $\mathcal{F}(e)$, e = [0, 1], i.e., $\mathcal{E}_G = \int_0^1 \mathcal{F}(e) de$

- Values in the range [0, 1]
- Higher \mathcal{E}_{G} values \rightarrow higher total engagement



Outline

1 Introduction

- 2 Problem Description
- 3 Proposed Engagement Measures
- 4 Engagement of Real Graphs
- 5 Discussion and Conclusions

Datasets

Basic Characteristics of Real-World Networks

Graph	# Nodes	# Edges
FACEBOOK	63, 392	816,886
Youtube	1, 134, 890	2,987,624
SLASHDOT	77, 360	546, 487
EPINIONS	75, 877	405, 739
EMAIL-EUALL	224, 832	340, 795
EMAIL-ENRON	33, 696	180, 811
CA-GR-QC	4, 158	13, 428
CA-ASTRO-PH	17, 903	197,031
СА-нер-рн	11, 204	117,649
СА-нер-тн	8,638	24, 827
CA-COND-MAT	21, 363	91,342
DBLP	404, 892	1, 422, 263

Experimental Setup

Address the following points:

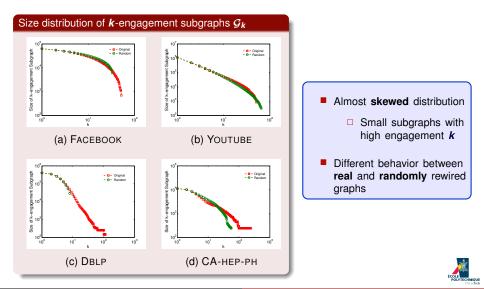
- P1 Study the characteristics of the engagement dynamics in real graphs
- P2 Examine how other graph features are related to the engagement of the graph

- Additional point: linear time complexity $\mathcal{O}(|\mathbf{E}| + |\mathbf{V}|)$
 - Properties of the k-core decomposition [Batagelj and Zaversnik, '03]

Engagement of Real Graphs

Discussion and Conclusions

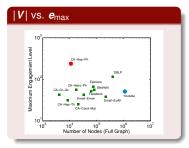
High Level Properties of *k*-Engagement Subgraphs Size Distribution

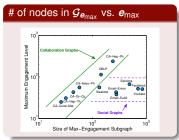


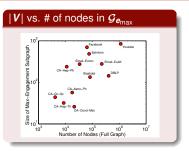
CIKM '13

(2/2)

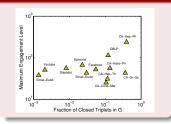
High Level Properties of *k*-Engagement Subgraphs Characteristics of Max-Engagement Subgraph $\mathcal{G}_{e_{max}}$



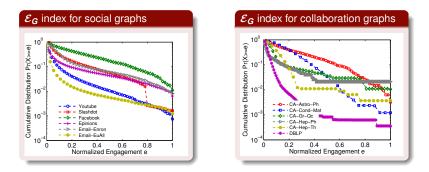




Closed triplets in G vs. emax



Graphs' Engagement Properties Engagement Index ε_{G}



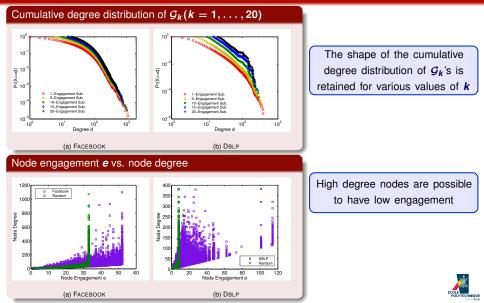
FACEBOOK has the maximum engagement index E_G

A relatively high fraction of nodes has high (normalized) engagement e

DBLP shows the lower engagement index *E*_G in the collaboration graphs

Possible explanation: significant number of "relatively" new authors with low engagement

Near Self Similar k-Engagement Subgraphs

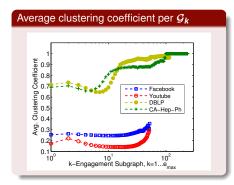


CIKM '13

Introduction

Discussion and Conclusions

Engagement and Clustering Structures



- Relation between engagement level and clustering structures in the graph
 - □ The probability of departure for a node is related to the overall neighborhood activity [Wu et al., WSDM '13]
- The avg. CC increases gradually as we are moving to G_k's of higher engagement

Outline

1 Introduction

- 2 Problem Description
- B Proposed Engagement Measures
- 4 Engagement of Real Graphs
- 5 Discussion and Conclusions

Disengagement Social Contagion

- Robustness/vulnerability assessment under node removals (departures) based on the engagement level
- The departure of a node can cause a cascade of node removals
 - We argue that nodes with high engagement will cause higher effect in the graph
- Almost skewed size distribution of the k-engagement subgraphs for real-world graphs
 - Random departures
 - Targeted departures
- Robustness assessment similar to the seminal result by Albert, Jeong and Barabási [Albert et al., Nature '00]

Conclusions and Future Work

Contributions:

- Engagement property in social graphs and connection with the departure dynamics
- Measures of engagement at both node and graph level
- Experiments: Engagement dynamics of real graphs

Future work:

- Extend the study on more complex types of graphs (e.g., directed, signed)
- Robustness/vulnerability assessment under targeted and random node departures based on the engagement level

References I

D. Easley and J. Kleinberg

Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, New York, NY, USA, 2010.

V. H. Manshadi and R. Johari

Supermodular network games. In Allerton, 2009.

A. Harkins

Network games with perfect complements. Technical report, University of Warwick, 2013.

K. Bhawalkar, J. Kleinberg, K. Lewi, T. Roughgarden, and A. Sharma

Preventing unraveling in social networks: the anchored k-core problem. In *ICALP*, 2011.

S. Wu, A. Das Sarma, A. Fabrikant, S. Lattanzi, and A. Tomkins

Arrival and departure dynamics in social networks. In WSDM, 2013.

V. Batagelj and M. Zaversnik

An o(m) algorithm for cores decomposition of networks. *CoRR*, 2003.

R. Albert, H. Jeong and A.-L. Barabási

Error and attack tolerance of complex networks. *Nature*, 406, 378–382, 2000.

Acknowledgments

Google Europe Fellowship in Graph Mining GOOgle

Fragkiskos D. Malliaros

DIGITEO Chair Grant LEVETONE in France digiteo

Michalis Vazirgiannis

Thank You !!

Fragkiskos D. Malliaros Ph.D. Student Data Science and Mining Group (DaSciM) École Polytechnique, France fmalliaros@lix.polytechnique.fr

www.lix.polytechnique.fr/~fmalliaros

Michalis Vazirgiannis Professor Data Science and Mining Group (DaSciM) École Polytechnique, France mvazirg@lix.polytechnique.fr

www.lix.polytechnique.fr/~mvazirg

31/31