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Abstract. Graph Neural Networks (GNNs) achieve significant perfor-
mance for various learning tasks on geometric data due to the incorpora-
tion of graph structure into the learning of node representations, which
renders their comprehension challenging. In this paper, we first propose
a unified framework satisfied by most existing GNN explainers. Then,
we introduce GraphSVX, a post hoc local model-agnostic explanation
method specifically designed for GNNs. GraphSVX is a decomposition
technique that captures the “fair” contribution of each feature and node
towards the explained prediction by constructing a surrogate model on a
perturbed dataset. It extends to graphs and ultimately provides as expla-
nation the Shapley Values from game theory. Experiments on real-world
and synthetic datasets demonstrate that GraphSVX achieves state-of-
the-art performance compared to baseline models while presenting core
theoretical and human-centric properties.

1 Introduction

Many aspects of the everyday life involve data without regular spatial structure,
known as non-euclidean or geometric data, such as social networks, molecular
structures or citation networks [1,10]. These datasets, often represented as graphs,
are challenging to work with because they require modelling rich relational
information on top of node feature information [37]. Graph Neural Networks
(GNNs) are powerful tools for representation learning of such data. They achieve
state-of-the-art performance on a wide variety of tasks [8,36] due to their recursive
message passing scheme, where they encode information from nodes and pass it
along the edges of the graph. Similarly to traditional deep learning frameworks,
GNNs showcase a complex functioning that is rather opaque to humans. As the
field grows, understanding them becomes essential for well known reasons, such
as ensuring privacy, fairness, efficiency, and safety [20].

While there exist a variety of explanation methods [25,27,29], they are not
well suited for geometric data as they fall short in their ability to incorporate
graph topology information. [2, 21] have proposed extensions to GNNs, but in
addition to limited performance, they require model internal knowledge and show
gradient saturation issues due to the discrete nature of the adjacency matrix.

GNNExplainer [33] is the first explanation method designed specifically
for GNNs. It learns a continuous (and a discrete) mask over the edges (and
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features) of the graph by formulating an optimisation process that maximizes
mutual information between the distribution of possible subgraphs and GNN
prediction. More recently, PGExplainer [16] and GraphMask [26] generalize
GNNExplainer to an inductive setting; they use re-parametrisation tricks to
alleviate the “introduced evidence” problem [5] — i.e. continuous masks deform
the adjacency matrix and introduce new semantics to the generated graph.
Regarding other approaches; GraphLIME [12] builds on LIME [22] to provide
a non-linear explanation model; PGM-Explainer [32] learns a simple Bayesian
network handling node dependencies; XGNN [34] produces model-level insights
via graph generation trained using reinforcement learning.

Despite recent progress, existing explanation methods do not relate much and
show clear limitations. Apart from GNNExplainer, none consider node features
together with graph structure in explanations. Besides, they do not present
core properties of a “good” explainer [19] (see Sec. 2). Since the field is very
recent and largely unexplored, there is little certified knowledge about explainers’
characteristics. It is, for instance, unclear whether optimising mutual information
is pertinent or not. Overall, this often yields explanations with a poor signification,
like a probability score stating how essential a variable is [16, 26, 33]. Existing
techniques not only lack strong theoretical grounds, but also do not showcase an
evaluation that is sophisticated enough to properly justify their effectiveness or
other desirable aspects [24]. Lastly, little importance is granted to their human-
centric characteristics [18], limiting the comprehensibility of explanations from a
human perspective.

In light of these limitations, first, we propose a unified explanation framework
encapsulating recently introduced explainers for GNNs. It not only serves as a
connecting force between them but also provides a different and common view of
their functioning, which should inspire future work. In this paper, we exploit it
ourselves to define and endow our explainer, GraphSVX, with desirable properties.
More precisely, GraphSVX carefully constructs and combines the key components
of the unified pipeline so as to jointly capture the average marginal contribution
of node features and graph nodes towards the explained prediction. We show
that GraphSVX ultimately computes, via an efficient algorithm, the Shapley
values from game theory [28], that we extend to graphs. The resulting unique
explanation, thus, satisfy several theoretical properties by definition, while it is
made more human-centric through several extensions. In the end, we evaluate
GraphSVX on real-world and synthetic datasets for node and graph classification
tasks. We show that it outperforms existing baselines in explanation accuracy,
and verifies further desirable aspects such as robustness or certainty.

2 Related Work

Explanations methods specific to GNNs are classified into five categories of meth-
ods according to [35]: gradient-based, perturbation, decomposition, surrogate, and
model-level. We utilise the same taxonomy in this paper to position GraphSVX.
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Decomposition methods [2, 21] distribute the prediction score among input
features using the weights of the network architecture, through backpropagation.
Despite offering a nice interpretation, they are not specific to GNNs and present
several major limits such as requiring access to model parameters or being sensi-
tive to small input changes, like gradient-based methods discussed in Sec. 1.

Perturbation methods [16,26,33] monitor variations in model prediction with
respect to different input perturbations. Such methods provide as explanation a
continuous mask over edges (features) holding importance probabilities learned
via a simple optimisation procedure, affected by the introduced-evidence problem.

Surrogate methods [12, 32] approximate the black box GNN model locally by
learning an interpretable model on a dataset built around the instance of interest
v (e.g., neighbours). Explanations for the surrogate model are used as explana-
tions for the original model. For now, such approaches are rather intuition-based
and consider exclusively node features or graph topology, not both.

Model level methods [34] provide general insights on the model function-
ing. It supports only graph classification, requires passing a candidate node set
as input and is challenged by local methods also providing global explanations [16].

As we will show shortly, GraphSVX bridges the gap between these categories by
learning a surrogate explanation model on a perturbed dataset that ultimately
decomposes the explained prediction among the nodes and features of the graph,
depending on their respective contribution. It also derives model-level insights by
explaining subsets of nodes, while avoiding the respective limits of each category.

Desirable properties of explanations have received subsequent attention
from the social sciences and the machine learning communities, but are often
overlooked when designing an explainer. From a theoretical perspective, good
explanations are accurate, fidel (truthful), and reflect the proportional importance
of a feature on prediction (meaningful) [4,35]. They also are stable and consistent
(robust), meaning with a low variance when changing to a similar model or a sim-
ilar instance [19]. Besides, they reflect the certainty of the model (decomposable)
and are as representative as possible of its (global) functioning [17]. Finally, since
their ultimate goal is to help humans understand the model, explanations should
be intuitive to comprehend (human-centric). Many sociological and psychological
studies emphasise key aspects: only a few motives (selective) [31], comparable to
other instances (contrastive) [14], and interactive with the explainee (social).

3 Preliminary Concepts and Background

Notation. We consider a graph G with N nodes and F features defined by
(X,A) where X ∈ RN×F is the feature matrix and A ∈ RN×N the adjacency
matrix. f(X,A) denotes the prediction of the GNN model f , and fv(X,A) the



4 A. Duval and F. D. Malliaros

score of the predicted class for node v. Let X∗j = (X1j , . . . , XNj) with feature
values x∗j = (x1j , . . . , xNj) represent feature j’s value vector across all nodes.
Similarly, Xi = Xi∗ = (Xi1, . . . , XiF ) stands for node i’s feature vector, with
XiS = {Xik|k ∈ S}. 1 is the all-ones vector.

3.1 Graph Neural Networks

GNNs adopt a message passing mechanism [11] where the update at each GNN
layer ` involves three key calculations [3]: (i) The propagation step. The model
computes a message m`

ij = Msg(h`−1i ,h`−1j , aij) between every pair of nodes

(vi, vj), that is, a function MSG of vi’s and vj ’s representations h`−1i and h`−1j in
the previous layer and of the relation aij between the nodes. (ii) The aggregation
step. For each node vi, GNN calculates an aggregated message Mi from vi’s
neighbourhood Nvi , whose definition vary across methods. M `

i = Agg(m`
ij |vj ∈

Nvi). (iii) The update step. GNN non-linearly transforms both the aggregated
message M `

i and vi’s representation h`−1i from the previous layer, to obtain vi’s
representation h`i at layer `: h`i = Upd(M `

i ,h
`−1
i ). The representation zi = hLi of

the final GNN layer L serves as final node embedding and is used for downstream
machine learning tasks.

3.2 The Shapley value

The Shapley value is a method from Game Theory. It describes how to fairly
distribute the total gains of a game to the players depending on their respective
contribution, assuming they all collaborate. It is obtained by computing the
average marginal contribution of each player when added to any possible coalition
of players [28]. This method has been extended to explain machine learning model
predictions on tabular data [13, 30], assuming that each feature of the explained
instance (x) is a player in a game where the prediction is the payout.

The characteristic function val : S → R captures the marginal contribution of
the coalition S ⊆ {1, . . . , F} of features towards the prediction f(x) with respect
to the average prediction: val(S) = E[f(X)|XS = xs]− E[f(X)]. We isolate the
effect of a feature j via val(S ∪ {j}) − val(S) and average it over all possible
ordered coalitions S to obtain its Shapley value as:

φj(val) =
∑

S⊆{1,...,F}\{j}

|S|! (F − |S| − 1)!

F !

(
val(S ∪ {j})− val(S)

)
.

The notion of fairness is defined by four axioms (efficiency, dummy, symmetry,
additivity), and the Shapley value is the unique solution satisfying them. In
practice, the sum becomes impossible to compute because the number of possible
coalitions (2F−1) increases exponentially by adding more features. We thus
approximate Shapley values using sampling [6, 15].
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Fig. 1. Overview of unified framework. All methods take as input a given graph
G = (X,A), feed it to a mask generator (Mask) to create three masks over nodes, edges,
and features. These masks are then passed to a graph generator (Gen) that converts
them to the original input space (X′,A′) before feeding them to the original GNN
model f . The resulting prediction f(X′,A′) is used to improve the mask generator, the
graph generator or the downstream explanation generator (Expl), which ultimately
provides the desired explanation using masks and f(X′,A′). This passage through
the framework is repeated many times so as to create a proper dataset D from which
each generator block learns. Usually, only one is optimised with a carefully defined
optimisation process involving the new and original GNN predictions.

4 A Unified Framework for GNN Explainers

As detailed in the previous section, existing interpretation methods for GNNs
are categorised and often treated separately. In this paper, we approach the
explanation problem from a new angle, proposing a unified view that regroups
existing explainers under a single framework: GNNExplainer, PGExplainer,
GraphLIME, PGM-Explainer, XGNN, and the proposed GraphSVX. The key
differences across models lie in the definition and optimisation of the three main
blocks of the pipeline, as shown in Fig. 1:

– Mask generates discrete or continuous masks over features MF ∈ RF , nodes
MN ∈ RN and edges ME ∈ RN×N , according to a specific strategy.

– Gen outputs a new graph G′ = (X′,A′) from the masks (ME ,MN ,MF )
and the original graph G = (X,A).

– Expl generates explanations, often offered as a vector or a graph, using a
function g whose definition vary across baselines.

In the following, we show how each baseline fits the pipeline. � stands for
the element wise multiplication operation, σ the softmax function, || the con-
catenation operation, and Mext describes the extended vector M with repeated
entries, whose size makes the operation feasible. All three masks are not con-
sidered for a single method; some are ignored as they have no effect on final
explanations; one often studies node feature MF or graph structure (ME or MN ).

GNNExplainer’s key component is the mask generator. It generates both MF

and ME , where ME has continuous values and MF discrete ones. They are both
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randomly initialised and jointly optimised via a mutual information loss function
MI(Y, (ME ,MF )) = H(Y )−H(Y |A′,X′), where Gen gives A′ = A� σ(ME)
and X′ = X �Mext

F . Y represents the class label and H(·) the entropy term.
Expl simply returns the learned masks as explanations, via the identity function
g(ME ,MF ) = (ME ,MF ).

PGExplainer is very similar to GNNExplainer. Mask generates only an edge
mask ME using a multi-layer neural network MLPψ and the learned matrix Z
of node representations: ME = MLPψ(G,Z). The new graph is constructed with
Gen(X,A,ME) = (X,A� ρ(ME)), where ρ denotes a reparametrisation trick.
The obtained prediction fv(X,A

′) is also used to maximise mutual information
with fv(X,A) and backpropagates the result to optimise Mask. As for GNNEx-
plainer, Expl provides ME as explanations.

GraphLIME is a surrogate method with a simple and not optimised mask
generator. Although it measures feature importance, it creates a node mask MN

using the neighbourhood of v (i.e., Nv). The kth mask (or sample) is defined
as Mk

N,i = 1 if vi = Nv[k] and 0 otherwise. Gen(X,A,MN ) = (X,A), so
in fact, it computes and stores the original model prediction. X and f(X,A)
are then combined with the mask MN via simple dot products M>

N · X and
M>

N · f(X,A) respectively, to isolate the original feature vector and prediction
of the kth neighbour of v. These two elements are treated as input and target of
an HSIC Lasso model g, trained with an adapted loss function. The learned co-
efficients constitute importance measures that are given as explanations by Expl.

PGM-Explainer builds a probabilistic graphical model on a local dataset
that consists of random node masks MN ∈ {0, 1}N . The associated prediction
fv(X′,A′) is obtained by posing A′ = A and X′ = Mext

N �X+(1−Mext
N �µext),

with µ = (E[X∗1], . . . , E[X∗F ])>. This means that each excluded node feature
(MN,j = 0) is set to its mean value across all nodes. This dataset is fed se-
quentially to the main component Expl, which learns and outputs a Bayesian
Network g with input MN (made sparser by looking at the Markov-blanket of v),
BIC score loss function, and target I(fv(X′,A′)), where I(·) is a specific function
that quantifies the difference in prediction between original and new prediction.

XGNN is a model-level approach that trains an iterative graph generator (add
one edge at a time) via reinforcement learning. This causes two key differences
with previous approaches: (1) the input graph at iteration t (Gt) is obtained from
the previous iteration and is initialised as the empty graph; (2) we also pass a
candidate node set C, such that XC contains the feature vector of all distinct
nodes across all graphs in dataset. Mask generates an edge mask ME = At and
a node mask MNt

∈ {0, 1}|C| specifying the latest node added to Gt, if any. Gen
produces a new graph Gt+1 from Gt by predicting a new edge, possibly creating
a new node from C. This is achieved by applying a GCN and two MLP networks.
Then, Gt+1 is fed to the explained GNN. The resulting prediction is used to
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update model parameters via a policy gradient loss function. Expl stores nonzero
MNt

at each time step and provides g({MNt
}t,XC ,ME)) = (||tMNt

·XC ,ME)
as explanation — i.e. the graph generated at the final iteration, written GT .

GraphSVX. As we will see in the next section, the proposed GraphSVX model
carefully exploits the potential of this framework through a better design and com-
bination of complex mask, graph and explanation generators–in the perspective
of improving performance and embedding desirable properties in explanations.

5 Proposed Method

GraphSVX is a post hoc model-agnostic explanation method specifically designed
for GNNs, that jointly computes graph structure and node feature explanations
for a single instance. More precisely, GraphSVX constructs a perturbed dataset
made of binary masks for nodes and features (MN ,MF ), and computes their
marginal contribution f(X′,A′) towards the prediction using a graph generator
Gen(X,A,MF ,MN ) = (X′,A′). It then learns a carefully defined explanation
model on the dataset (MN ||MF , f(X′,A′)) and provides it as explanation. Ul-
timately, it produces a unique deterministic explanation that decomposes the
original prediction and has a real signification (Shapley values) as well as other
desirable properties evoked in Sec. 2. Without loss of generality, we consider a
node classification task for the presentation of the method.

5.1 Mask and graph generators

First of all, we create an efficient mask generator algorithm that constructs
discrete feature and node masks, respectively denoted by MF ∈ {0, 1}F and
MN ∈ {0, 1}N . Intuitively, for the explained instance v, we aim at studying the
joint influence of a subset of features and neighbours of v towards the associated
prediction fv(X,A). The mask generator helps us determine the subset being
studied. Associating 1 with a variable (node or feature) means that it is considered,
0 that it is discarded. For now, we let Mask randomly sample from all possible
(2F+N−1) pairs of masks MF and MN , meaning all possible coalitions S of
features and nodes (v is not considered in explanations). Let z be the random
variable accounting for selected variables, z = (MF ‖MN ). This is a simplified
version of the true mask generator, which we will come back to later, in Sec. 5.4.

We now would like to estimate the joint effect of this group of variables
towards the original prediction. We thus isolate the effect of selected variables
marginalised over excluded ones, and observe the change in prediction. We
define Gen : (X,A,MF ,MN ) → (X′,A′), which converts the obtained masks
to the original input space, in this perspective. Due to the message passing
scheme of GNNs, studying jointly node and features’ influence is tricky. Unlike
GNNExplainer, we avoid any overlapping effect by considering feature values
of v (instead of the whole subgraph around v) and all nodes except v. Several
options are possible to cancel out a node’s influence on the prediction, such as
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replacing its feature vector by random or expected values. Here, we decide to
isolate the node in the graph, which totally removes its effect on the prediction.
Similarly, to neutralise the effect of a feature, as GNNs do not handle missing
values, we set it to the dataset expected value. Formally, it translates into:

X′ = X with X′v = MF �Xv + (1−MF )� µ (1)

A′ = (Mext>
N ·A ·Mext

N )� I(A), (2)

where µ = (E[X∗1], . . . ,E[X∗F ])> and I(·) captures the indirect effect of k-hop
neighbours of v (k > 1), which is often underestimated. Indeed, if a 3-hop
neighbour w is considered alone in a coalition, it becomes disconnected from
v in the new graph G′. This prevents us from capturing its indirect impact on
the prediction since it does not pass information to v anymore. To remedy this
problem, we select one shortest path P connecting w to v via Dijkstra’s algorithm,
and include P back in the new graph. To keep the influence of the new nodes (in
P \ {w, v}) switched off, we set their feature vector to mean values obtained by
Monte Carlo sampling.

To finalize the perturbation dataset, we pass z′ = (X′,A′) to the GNN model
f and store each sample (z, f(z′)) in a dataset D. D associates with a subset of
nodes and features of v their estimated influence on the original prediction.

5.2 Explanation generator

In this section, we build a surrogate model g on the dataset D = {(z, f(z′))}
and provide it as explanation. More rigorously, an explanation φ of f is normally
drawn from a set of possible explanations, called interpretable domain Ω. It is
the solution of the following optimisation process: φ = arg ming∈Ω Lf (g), where
the loss function attributes a score to each explanation. The choice of Ω has a
large impact on the type and quality of the obtained explanation. In this paper,
we choose broadly Ω to be the set of interpretable models, and more precisely
the set of Weighted Linear Regression (WLR).

In short, we intend our model to learn to calculate the individual effect of
each variable towards the original prediction from the joint effect f(z′), using
many different coalitions S of nodes and features. This is made possible by the
definition of the input dataset D and is enforced by a cross entropy loss function,
as follows:

Lf,π(g) =
∑

z

[
g(z)− f(z′)

]2
πz,

where πz =
F +N − 1

(F +N) · |z|
·
(
F +N − 1

|z|

)−1
.

(3)

π is a kernel weight that attributes a high weight to samples z with small or
large dimension, or in different terms, groups of features and nodes with few or
many elements—since it is easier to capture individual effects from the combined
effect in these cases.
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In the end, we provide the learned parameters of g as explanation. Each
coefficient corresponds to a node of the graph or a feature of v and represents
its estimated influence on the prediction fv(X,A). In fact, it approximates the
extension of the Shapley value to graphs, as shown in next paragraph.

5.3 Decomposition model

We first justify why it is relevant to extend the Shapley value to graphs. Looking
back at the original theory, each player contributing to the total gain is allocated
a proportion of that gain depending on its fair contribution. Since a GNN
model prediction is fully determined by node feature information (X) and graph
structural information (A), both edges/nodes and node features are players that
should be considered in explanations. In practice, we extend to graphs the four
Axioms defining fairness (please see the extended version [9]), and redefine how is
captured the influence of players (features and nodes) towards the prediction as
val(S) = EXv

[fv(X,AS)|XvS = xvS ]− E[fv(X,A)]. AS is the adjacency matrix
where all nodes in S (not in S) have been isolated.

Assuming model linearity and feature independence, we show that GraphSVX,
in fact, captures via f(z′) the marginal contribution of each coalition S towards
the prediction:

EXv
[fv(X,AS)|XvS ] = EXvS |XvS

[fv(X,AS)]

≈ EXvS
[fv(X,AS)] by independence

≈ fv(EXvS
[X],AS) by linearity

= fv(X
′,A′),

where A′ = AS and X′ij =

{
E[X∗j ] if i = v and j ∈ S
Xij otherwise.

Using the above, we prove that GraphSVX calculates the Shapley values on
graph data. This builds on the fact that Shapley values can be expressed as
an additive feature attribution model, as shown by [15] in the case of tabular data.

In this perspective, we set πv such that πv(z)→∞ when |z| ∈ {0, F +N} to

enforce the efficiency axiom: g(1) = fv(X,A) = E[fv(X,A)] +
∑F+N
i=1 φi. This

holds due to the specific definition of Gen and g (i.e., Expl), where g(1) =
fv(X,A) and the constant φ0, also called base value, equals EXv [fv(X,Av)] ≈
E[fv(X,A)], so the mean model prediction. Av refers to A∅, where v is isolated.

Theorem 1. With the above specifications and assumptions, the solution to
ming∈Ω Lf,π(g) under Eq. (3) is a unique explanation model g whose parameters
compute the extension of the Shapley values to graphs.

Proof. Please see the extended version of this paper [9].
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5.4 Efficient approximation specific to GNNs

Similarly to the euclidean case, the exact computation of the Shapley values
becomes intractable due to the number of possible coalitions required. Especially
that we consider jointly features and nodes, which augments exponentially the
complexity of the problem. To remedy this, we derive an efficient approximation
via a smart mask generator.

Firstly, we reduce the number of nodes and features initially considered to
D ≤ N and B ≤ F respectively, without impacting performance. Indeed, for a
GNN model with k layers, only k-hop neighbours of v can influence the prediction
for v, and thus receive a non-zero Shapley value. All others are allocated a null
importance according to the dummy axiom1 and can therefore be discarded.
Similarly, each feature j of v whose value is comprised in the confidence interval
Ij = [µj − λ · σj , µj + λ · σj ] around the mean value µj can be discarded, where
σj is the corresponding standard deviation and λ a constant.

The complexity is now O(2B+D) and we further drive it down to O(2B + 2D)
by sampling separately masks of nodes and features, while still considering
them jointly in g. In other words, instead of studying the influence of possible
combinations of nodes and features, we consider all combinations of features
with no nodes selected, and all combinations of nodes with all features included:
(2B + 2D). We observe empirically that it achieves identical explanations with
fewer samples, while it seems to be more intuitive to capture the effect of nodes
and features on prediction (expressed by Axiom 1).

Axiom 1 (Relative efficiency) Node contribution to predictions can be sep-
arated from feature contribution, and their sum decomposes the prediction with

respect to the average one, as

{∑B
j=1 φj = fv(X,Av)− E[fv(X,A)]∑D
i=1 φB+i = fv(X,A)− fv(X,Av).

Lastly, we approximate explanations using P � 2B + 2D samples, where P is
sufficient to obtain a good approximation. We reduce P by greatly improving
Mask, as evoked in Sec. 5.1. Assuming we have a budget of P samples, we
develop a smart space allocation algorithm to draw in priority coalitions of order
k, where k starts at 0 and is incremented when all coalitions of the order are
sampled. This means that we sample in priority coalitions with high weight, so
with nearly all or very few players. If they cannot all be chosen (for current k) due
to space constraints, we proceed to a smart sampling that favours unseen players.
The pseudocode and an efficiency evaluation lie in the extended version [9].

5.5 Desirable properties of explanations

In the end, GraphSVX generates fairly distributed explanations
∑
j φj = fv(X,A),

where each φj approximates the average marginal contribution of a node or feature
j towards the explained GNN prediction (with respect to the average prediction

1 Axiom: If ∀S ∈ P({1, . . . , p}) and j /∈ S, val(S ∪ {j}) = val(S), then φj(val) = 0.
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φ0). By definition, the resulting explanation is unique, consistent, and stable. It
is also truthful and robust to noise, as shown in Sec. 6.2. The last focus of this
paper is to make them more selective, global, contrastive and social; as we aim
to design an explainer with desirable properties. A few aspects are detailed here.

Contrastive. Explanations are contrastive already as they yield the contribution
of a variable with respect to the average prediction φ0 = E[f(X,A)]. To go futher
and explain an instance with respect to another one, we could substitute Xv in
Eq. (1) by X′v = MF �Xv + (1−MF )� ξ, with ξ being the feature vector of a
specific node w, or of a fictive representative instance from class C.

Global. We derive explanations for a subset U of nodes instead of a single node
v, following the same pipeline. The neighbourhood changes to

⋃U
i Ni, Eq. (1)

now updates XU instead of Xv and f(z′) is calculated as the average prediction
score for nodes in U . Also, towards a more global understanding, we can output
the global importance of each feature j on v’s prediction by enforcing in Eq. (1)
XNv∪{v},j to a mean value obtained by Monte Carlo sampling on the dataset,
when zj = 0. This holds when we discard node importance, otherwise the over-
lapping effects between nodes and features render the process obsolete.

Graph classification. Until now, we had focused on node classification but
the exact same principle applies for graph classification. We simply look at
f(X,A) ∈ R instead of fv(X,A), derive explanations for all nodes or all features
(not both) by considering features across the whole dataset instead of features of
v, like our global extension.

6 Experimental Evaluation

In this section, we conduct several experiments designed to determine the quality
of our explanation method, using synthetic and real world datasets, on both
node and graph classification tasks. We first study the effectiveness of GraphSVX
in presence of ground truth explanations. We then show how our explainer
generalises to more complex real world datasets with no ground truth, by testing
GraphSVX’s ability to filter noisy features and noisy nodes from explanations.
Detailed dataset statistics, hyper-parameter tuning, properties’ check and further
experimental results including ablation study, are given in the extended version [9].
The source code is available at https://github.com/AlexDuvalinho/GraphSVX.

6.1 Synthetic and real datasets with ground truth

Synthetic node classification task. We follow the same setting as [16] and [33],
where four kinds of datasets are constructed. Each input graph is a combination
of a base graph together with a set of motifs, which both differ across datasets.
The label of each node is determined based on its belonging and role in the motif.

 https://github.com/AlexDuvalinho/GraphSVX
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Node Classification Graph Classification

BA-Shapes BA-Community Tree-Cycles Tree-Grid BA-2motifs MUTAG

Base

Community 0

Community 1

Motifs
Label 0 Label 1

NO2 NH2

Features None N (µl, σl) None None None Atom types

Visualization

Explanations by
GraphSVX

Explanation Accuracy

GNNExplainer 0.83 0.75 0.86 0.84 0.68 0.65

PGM-Explainer 0.96 0.92 0.95 0.87 0.91 0.72
PGExplainer 0.92 0.81 0.96 0.88 0.85 0.79
GraphSVX 0.99 0.93 0.97 0.93 0.99 0.77

Table 1. Evaluation of GraphSVX and baseline GNN explainers on various datasets.
The top part describes the construction of each dataset, with its base graph, the motif
added, and the node features generated. Node labels are represented by colors. Then, we
provide a visualisation of GraphSVX’s explanations, where an important substructure
is drawn in bold, as well as a quantitative evaluation based on the accuracy metric.

As a consequence, the explanation for a node in a motif should be the nodes in
the same motif, which creates ground truth explanation. This ground truth can
be used to measure the performance of an explainer via an accuracy metric.

Synthetic and real-world graph classification task. With a similar evalu-
ation perspective, we measure the effectiveness of our explainer on graph classi-
fication, also using ground truth. We use a synthetic dataset BA-2motifs that
resembles the previous ones, and a real life dataset called MUTAG. It consists of
4, 337 molecule graphs, each assigned to one of 2 classes based on its mutagenic
effect [23]. As discussed in [7], carbon rings with groups NH2 or NO2 are known
to be mutagenic, and could therefore be used as ground truth.

Baselines. We compare the performance of GraphSVX to the main explanation
baselines that incorporate graph structure in explanations, namely GNNExplainer,
PGExplainer and PGM-Explainer. GraphLIME and XGNN are not applicable
here, since they do not provide graph structure explanations for such tasks.

Experimental setup and metrics. We train the same GNN model – 3 graph
convolution blocks with 20 hidden units, (maxpooling) and a fully connected
classification layer – on every dataset during 1, 000 epochs, with relu activation,
Adam optimizer and initial learning rate 0.001. The performance is measured
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with an accuracy metric (node or edge accuracy depending on the nature of expla-
nations) on top-k explanations, where k is equal to the ground truth dimension.
More precisely, we formalise the evaluation as a binary classification of nodes (or
edges) where nodes (or edges) inside motifs are positive, and the rest negative.

Results. The results on both synthetic and real-life datasets are summarized
in Table 1. As shown both visually and quantitatively, GraphSVX correctly
identifies essential graph structure, outperforming the leading baselines on all but
one task, in addition to offering higher theoretical guarantees and human-friendly
explanations. On MUTAG, the special nature of the dataset and ground truth
favours edge explanation methods, which capture slightly more information than
node explainers. Hence, we expect PGExplainer to perform better. For BA-
Community, GraphSVX demonstrates its ability to identify relevant features and
nodes together, as it also identifies important node features with 100% accuracy.
In terms of efficiency, our explainer is slower than the scalable PGExplainer
despite our efficient approximation, but is often comparable to GNNExplainer.

6.2 Real-world datasets without ground truth

Previous experiments involve mostly synthetic datasets, which are not totally
representative of real-life scenarios. Hence, in this section, we evaluate GraphSVX
on two real-world datasets without ground truth explanations: Cora and PubMed.
Instead of looking if the explainer provides the correct explanation, we check that
it does not provide a bad one. In particular, we introduce noisy features and nodes
to the dataset, train a new GNN on the latter (which we verify do not leverage
these noisy variables) and observe if our explainer includes them in explanations.
In different terms, we investigate if the explainer filters useless features/nodes in
complex datasets, selecting only relevant information in explanations.

Datasets. Cora is a citation graph where nodes represent articles and edges
represent citations between pairs of papers. The task involved is document classi-
fication where the goal is to categorise each paper into one out of seven categories.
Each feature indicates the absence/presence of the corresponding term in its
abstract. PubMed is also a publication dataset with three classes and 500 features,
each indicating the TF-IDF value of the corresponding word.

Noisy features. Concretely, we artificially add 20% of new “noisy” features to the
dataset. We define these new features using existing ones’ distribution. We re-train
a 2-layer GCN and a 2-layer GAT model on this noisy data, whose test accuracy
is above 75%. We then produce explanations for 50 test samples using different
explainer baselines, on Cora and PubMed, and we compare their performance
by assessing how many noisy features are included in explanations among top-k
features. Ultimately, we compare the resulting frequency distributions using a
kernel density estimator (KDE). Intuitively, since features are noisy, they are not
used by the GNN model, and thus are unimportant. Therefore, the less noisy
features are included in the explanation, the better the explainer.
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(a) Cora (b) PubMed

(c) Cora (d) PubMed

Fig. 2. Frequency distributions of noisy features (a), (b) and nodes (c), (d) using a
GAT model on Cora and PubMed.

Baselines include GNNExplainer, GraphLIME (described previously) as well
as the well-known SHAP [15] and LIME [22] models. We also compare GraphSVX
to a method based on a Greedy procedure, which greedily removes the most
contributory features/nodes of the prediction until the prediction changes, and
to the Random procedure, which randomly selects k features/nodes as the
explanations for the prediction being explained.

The results are depicted in Fig. 2 (a)-(b). For all GNNs and on all datasets,
the number of noisy features selected by GraphSVX is close to zero, and in
general lower than existing baselines—demonstrating its robustness to noise.

Noisy nodes. We follow a similar idea for noisy neighbours instead of noisy
features. Each new node’s connectivity and feature vector are determined using
the dataset’s distribution. Only a few baselines (GNNExplainer, Greedy, Random)
among the ones selected previously can be included for this task since GraphLIME,
SHAP, and LIME do not provide explanations for nodes.

As before, this evaluation builds on the assumption that a well-performing
model will not consider as essential these noisy variables. We check the validity
of this assumption for the GAT model by looking at its attention weights. We
retrieve the average attention weight of each node across the different GAT layers
and compare the one attributed to noisy nodes versus normal nodes. We expect
it to be lower for noisy nodes, which proves to be true: 0.11 vs. 0.15.

As shown in Fig. 2 (c)-(d), GraphSVX also outperforms all baselines, showing
nearly no noisy nodes in explanations. Nevertheless, GNNExplainer achieves
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almost as good performance on both datasets (and in several evaluation settings).

7 Conclusion

In this paper, we have first introduced a unified framework for explaining GNNs,
showing how various explainers could be expressed as instances of it. We then
use this complete view to define GraphSVX, which conscientiously exploits the
above pipeline to output explanations for graph topology and node features
endowed with desirable theoretical and human-centric properties, eligible of a
good explainer. We achieve this by defining a decomposition method that builds
an explanation model on a perturbed dataset, ultimately computing the Shapley
values from game theory, that we extended to graphs. After extensive evaluation,
we not only achieve state-of-the-art performance on various graph and node
classification tasks but also demonstrate the desirable properties of GraphSVX.

Acknowledgements. Supported in part by ANR (French National Research
Agency) under the JCJC project GraphIA (ANR-20-CE23-0009-01).
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